Лития гидроксид гидролиз сложных эфиров. Гидролиз сложных эфиров

Сложными эфирами называются функциональные производные карбоно­вых кислот обшей формулы RC(О)ОR" .

Сложные эфиры карбоновых кислот (а также сульфоновых кислот) называют аналогично солям, только вместо названия катиона употребляют название со­ответствующего алкила или арила, которое помещается перед названием ани­она и пишется с ним слитно. Наличие сложноэфирной группы -COOR также можно отразить описательным способом, например, «R-овый эфир (такой-то) кислоты» (такой способ менее предпочтителен ввиду его громоздкости):

Сложные эфиры низших спиртов и карбоновых кислот представляют со­бой летучие жидкости, с приятным запахом, плохо растворимые в воде и хорошо - в большинстве органических растворителей. Запахи сложных эфиров напоминают запахи разных фруктов, благодаря чему в пищевой промыш­ленности из них готовят эссенции, имитирующие фруктовые запахи. Повы­шенную летучесть сложных эфиров используют в аналитических целях.

Гидролиз. Важнейшей из реакций ацилирования является гидролиз слож­ных эфиров с образованием спирта и карбоновой кислоты:

Реакция осуществляется как в кислой, так и в щелочной среде. Кислотно-катализируемый гидролиз сложных эфиров - реакция, обратная этерифика­ции, протекает по тому же самому механизму А АС 2:

Нуклеофилом в этой реакции является вода. Смещение равновесия в сторо­ну образования спирта и кислоты обеспечивается добавлением избытка воды.

Щелочной гидролиз необратим, в процессе реакции на моль эфира расхо­дуется моль щелочи, т. е. щелочь в этой реакции выступает в качестве расхо­дуемого реагента, а не катализатора:

Гидролиз сложных эфиров в щелочной среде протекает по бимолекуляр­ному ацильному механизму В АС 2 через стадию образования тетраэдрического интермедиата (I). Необратимость щелочного гидролиза обеспечивается прак­тически необратимым кислотно-основным взаимодействием карбоновой кис­лоты (II) и алкоксид-иона (III). Образовавшийся анион карбоновой кислоты (IV) сам является довольно сильным нуклеофилом и потому не подвергается нуклеофильной атаке.

Аммонолиз сложных эфиров. Амиды получают с помощью аммонолиза сложных эфиров. Например, при действии водного аммиака на диэтилфумарат образуется полный амид фумаровой кислоты:

При аммонолизе сложных эфиров аминами с низкой нуклеофильностью последние предварительно превращают в амиды щелочных или щелочно-зе­мельных металлов:

Амиды карбоновых кислот: номенклатура; строение амидной группы; кислотно–основные свойства; кислотный и щелочной гидролиз; расщепление гипобромитами и азотистой кислотой; дегидратация в нитрилы; химическая идентификация.

Амидами называются функциональные производные карбоновых кислот обшей формулы R-С(О)-NH 2- n R" n , где п = 0-2. В незамещенных амидах ацильный остаток соединен с незамещенной аминогруппой, в N-замещенных амидах один из атомов водорода замещен одним алкильным или арильным радикалом, в N,N-замещенных - двумя.

Соединения, содержащие одну, две или три ацильные группы, присоеди­ненные к атому азота, носят родовое название амиды (соответственно первич­ные, вторичные и третичные). Названия первичных амидов с незамещенной группой - NH 2 производят от названий соответствующих ацильных радикалов заменой суффикса -оил (или -ил) на -амид. Амиды, образованные от кислот с суффиксом -карбоновая кислота, получают суффикс -карбоксамид. Амиды сульфоновых кислот также называют по соответствующим кислотам, исполь­зуя суффикс -сулъфонамид.

Названия радикалов RCO-NH- (как и RSО 2 -NH-) образуют от назва­ний амидов, изменяя суффикс -амид на -амидо-. Они применяются в том слу­чае, если в остальной части молекулы имеется более старшая группа или заме­щение происходит в более сложной структуре, чем радикал R:

В названиях N-замещенных первичных амидов RCO-NHR" и RCO-NR"R" (а также подобных сульфонамидов) названия радикалов R" и R" указывают перед названием амида с символом N-:

Амиды такого типа часто называют вторичными и третичными амидами, что ИЮПАК не рекомендуется.

N-Фенилзамещенные амиды получают в названиях суффикс -анилид. По­ложение заместителей в остатке анилина указывается цифрами со штрихами:

Сохранились, кроме того, полусистематические названия, в которых суффикс -амид соединен с основой латинского названия карбоновой кислоты (формамид, ацетамид), а также некоторые тривиальные названия, такие, как «анилиды» (ацилированные анилины) или «толуидиды» (ацилированные толуидины).

Амиды представляют собой кристаллические вещества с относительно вы­сокими и четкими температурами плавления, что позволяет использовать не­которые из них в качестве производных для идентификации карбоновых кис­лот. В редких случаях являются жидкостями, например, амиды му­равьиной кислоты - формамид и N,N-диметилформамид - известные диполярные апротонные растворители. Низшие амиды хорошо растворимы в воде.

Амиды являются одними из самых устойчивых к гидролизу функциональ­ных производных карбоновых кислот, благодаря чему широко распростране­ны в природе. Многие амиды применяются в качестве лекарственных средств. Уже около века используются в медицинской практике парацетамол и фенаце­тин, являющиеся замещенными амидами уксусной кислоты.

Строение амидов. Электронное строение амидной группы в значительной степени сходно со строением карбоксильной группы. Амидная группа являет­ся p,π-сопряженной системой, в которой неподеленная пара электронов атома азота сопряжена с электронами π-связи С=O. Делокализация электронной плотности в амидной группе может быть представлена двумя резонансными структурами:

За счет сопряжения связь С-N в амидах имеет частичнодвоесвязанный характер, длина ее существенно меньше длины одинарной связи в аминах, тогда как связь С=O несколько длиннее, чем связь С=O в альдегидах и кетонах. Амидная группа из-за сопряжения имеет плоскую конфигурацию . Ниже приведены геометрические параметры молекулы N-замещенного амида, уста­новленные с помощью рентгеноструктурного анализа:

Важным следствием частично двоесвязанного характера связи С-N явля­ется довольно высокий энергетический барьер вращения вокруг этой связи, например, для диметилформамида он составляет 88 кДж/моль. По этой при­чине амиды, имеющие у атома азота разные заместители, могут существовать в виде π-диастереомеров. N-Замещенные амиды существуют преимущественно в виде Z-изомеров:

В случае N,N-дизамещенных амидов соотношение Е- и Z-изомеров зави­сит от объема радикалов, соединенных с атомом азота. Стереоизомеры амидов конфигурационно неустойчивы, их существование доказано в основном фи­зико-химическими методами, в индивидуальном виде они выделялись лишь в отдельных случаях. Это связано с тем, что барьер вращения для амидов все-та­ки не такой высокий, как у алкенов, у которых он составляет 165 кДж/моль.

Кислотно-основные свойства. Амиды обладают слабыми как кислотны­ми, так и основными свойствами . Основность амидов лежит в пределах значе­ний Рk BH + от -0,3 до -3,5. Причиной пониженной основности аминогруппы в амидах является сопряжение неподеленной пары электронов атома азота с карбонильной группой. При взаимодействии с сильными кислотами амиды протонируются по атому кислорода как в разбавленных, так и в концентриро­ванных растворах кислот. Такого рода взаимодействие лежит в основе кислот­ного катализа в реакциях гидролиза амидов:

Незамещенные и N-замещенные амиды проявляют слабые NH-кислот­ные свойства , сравнимые с кислотностью спиртов и отщепляют протон только в реакциях с сильными основаниями.

Кислотно-основное взаимодействие лежит в основе образования амидами межмолекулярных ассоциатов , существованием которых объясняются высо­кие температуры плавления и кипения амидов. Возможно существование двух типов ассоциатов: линейных полимеров и циклических димеров. Преоблада­ние того или иного типа определяется строением амида. Например, N-метилацетамид, для которого предпочтительна Z-конфигурация, образует линейный ассоциат, а лактамы, имеющие жестко зафиксированную E-кон­фигурацию, образуют димеры:

N, N-Дизамещенные амиды образуют димеры за счет диполь-дипольного взаимодействия 2х полярных молекул:

Реакции ацилирования. Вследствие наличия в сопряженной системе ами­дов сильной электронодонорной аминогруппы электрофильность карбониль­ного атома углерода, а следовательно, и реакционная способность амидов в реакциях ацилирования очень низкая. Низкая ацилирующая способность амидов объясняется также и тем, что амид-ион NH 2 - - плохая уходящая груп­па. Из реакций ацилирования значение имеет гидролиз амидов, который можно проводить в кислой и щелочной средах. Амиды гид­ролизуются намного труднее, чем другие функциональные производные кар­боновых кислот. Гидролиз амидов проводится в более жестких условиях по сравнению с гидролизом сложных эфиров.

Кислотный гидролиз амидов - необратимая реакция, приводящая к обра­зованию карбоновой кислоты и аммониевой соли:

В большинстве случаев кислотный гидролиз амидов протекает по меха­низму бимолекулярного кислотного ацилирования А АС 2 , т. е. похож на механизм кислотного гидролиза сложных эфиров. Необратимость реакции обусловлена тем, что аммиак или амин в кислой среде превращаются в ион аммония, не обладающий нуклеофильными свойствами:

Щелочной гидролиз тоже необратимая реакция; в результате ее образуют­ся соль карбоновой кислоты и аммиак или амин:

Щелочной гидролиз амидов, как и гидролиз сложных эфиров, протекает по тетраэдрическому механизму В АС 2 . Реакция начинается с присо­единения гидроксид-иона (нуклеофила) к электрофильному атому углерода амидной группы. Образовавшийся анион (I) протонируется по атому азота, и далее в биполярном ионе (II) формируется хорошая уходящая группа - моле­кула аммиака или амина. Полагают, что медленная стадия - распад тетраэдрического интермедиата (II).

Для анилидов и других амидов с электроноакцепторными заместителями у атома азота распад тетраэдрического интермедиата (I) может проходить через образование дианиона (II):

Расщепление азотистой кислотой. При взаимодействии с азотистой кис­лотой и другими нитрозирующими агентами амиды превращаются в соответ­ствующие карбоновые кислоты с выходами до 90%:

Дегидратация. Незамещенные амиды под действием оксида фосфора(V) и некоторых других реагентов (РОС1 3 , РС1 5 , SOCl 2) превращаются в нитрилы:

47. Карбоновые кислоты: галогенирование по Геллю-Фольгарду-Зелинскому, использование реакции для синтеза a-гидрокси и a-аминокислот.

Галогенирование алифатических карбоновых кислот.

Алифатические карбоновые кислоты галогенируются в α-положение хло­ром или бромом в присутствии каталитических количеств красного фосфора или галогенидов фосфора (реакция Гелля-Фольгарда-Зелин­ского ). Например, при бромировании гексановой кислоты в присутствии красного фосфора или хлорида фосфора(III) с высоким выходом образуется 2-бромогексановая кислота, например:

Бромированию подвергается не сама карбоновая кислота, а образующий­ся из нее in situ хлорангидрид. Хлорангидрид обладает более сильными, чем карбоновая кислота, СН-кислотными свойствами и легче образует енольную форму.

Енол (I) присоединяет бром с образованием галогенопроиз­водного (II), которое в дальнейшем отщепляет галогеноводород и превращает­ся в α-галогенозамещенный галогенангидрид (III). На последнем этапе проис­ходит регенерирование галогенангидрида незамещенной карбоновой кислоты.

Из образующихся α-галогенозамещенных кислот с помощью реакций нук­леофильного замещения синтезируют другие гетерофункциональные кислоты.

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.

Сложными эфирами называются функциональные производные карбоновых кислот общей формулы RC(0)0R".

Способы получения. Наиболее значимым способом получения сложных эфиров является ацилирование спиртов и фенолов различными ацилирующими агентами, например, карбоновой кислотой, хлорангидридами, ангидридами. Они могут быть также получены по реакции Тищенко.

Сложные эфиры с высокими выходами получают путем алкилирования солей карбоновых кислот алкилгалогенидами:

Сложные эфиры образуются в результате электрофильного присоединения карбоновых кислот к алкенам и алкинам. Реакция часто применяется для получения сложных эфиров третичных спиртов, например трет -бутиловых эфиров:

Присоединением уксусной кислоты к ацетилену получают промышленно важный мономер винилацетат, в качестве катализатора используют ацетат цинка на активированном угле:

Гидролиз. Важнейшей из реакций ацилирования является гидролиз сложных эфиров с образованием спирта и карбоновой кислоты:

Реакция осуществляется как в кислой, так и в щелочной среде. Кислотно-катализируемый гидролиз сложных эфиров - реакция, обратная этерификации, протекает по тому же самому механизму Алс 2

Щелочной гидролиз необратим, в процессе реакции на моль эфира расходуется моль щелочи, т. е. щелочь в этой реакции выступает в качестве расходуемого реагента, а не катализатора:

Гидролиз сложных эфиров в щелочной среде протекает по бимолекулярному ацильному механизму ВАС2 через стадию образования тетраэдрического интермедиата (I). Необратимость щелочного гидролиза обеспечивается практически необратимым кислотно-основным взаимодействием карбоновой кислоты (И) и алкоксид-иона (III). Образовавшийся анион карбоновой кислоты (IV) сам является довольно сильным нуклеофилом и потому не подвергается нуклеофильной атаке.

Переэтерификация. С помощью этой реакции осуществляется взаимопревращение сложных эфиров одной и той же кислоты по схеме:

Переэтерификация - обратимый процесс, катализируется как кислотами, так и основаниями, и протекает по тем же механизмам, что и реакции этерификации и гидролиза сложных эфиров. Равновесие смещают общеизвестными приемами, а именно применением избытка спирта-реагента (R"OH на приведенной схеме - для смещения вправо) или отгонкой одного из продуктов реакции, если он - самый низкокипящий компонент. Переэтерификацией, например, получают известный анестетик новокаин (основание) из этилового эфира л-аминобензойной кислоты:

Сложноэфирная конденсация. При конденсации двух молекул сложного эфира в присутствии основного катализатора образуются эфиры β-оксокислот:

Молекула этилацетата обладает слабыми СН-кислотными свойствами за счет индуктивного эффекта сложноэфирной группы и способна взаимодействовать с сильным основанием - этоксид-ионом:


Амиды карбоновых кислот. Способы получения. Строение амидной группы. Кислотно-основные свойства амидов. Кислотный и щелочной гидролиз. Расщепление амидов галогенами в щелочной среде и азотистой кислотой. Дегидратация в нитрилы.

Амидами называются функциональные производные карбоновых кислот обшей формулы R-С(О)-NH2_nR"„, где п = 0-2.

Способы получения. Наиболее важным методом получения амидов является ацилирование аммиака и аминов галогенангидридами, ангидридами и сложными эфирами.

Ацилирование аммиака и аминов галогенангидридами. Реакция ацилирования аммиака и аминов галогенангидридами экзотермична и проводится при охлаждении:

Ацилирование аммиака и аминов ангидридами. Для ацетилирования аминов чаще всего используется самый доступный из ангидридов - уксусный ангидрид:

Аммонолиз сложных эфиров. Амиды получают с помощью аммонолиза сложных эфиров. Например, при действии водного аммиака на диэтилфумарат образуется полный амид фумаровой кислоты:

Строение амидов. Электронное строение амидной группы в значительной степени сходно со строением карбоксильной группы. Амидная группа является р,л-сопряженной системой, в которой неподеленная пара электронов атома азота сопряжена с электронами л-связи С=0. Делокализация электронной плотности в амидной группе может быть представлена двумя резонансными структурами:

За счет сопряжения связь С-N в амидах имеет частично двоесвязанный характер, длина ее существенно меньше длины одинарной связи в аминах, тогда как связь С=0 несколько длиннее, чем связь С=0 в альдегидах и кетонах. Амидная группа из-за сопряжения имеет плоскую конфигурацию. Ниже приведены геометрические параметры молекулы iV-замещенного амида, установленные с помощью рентгеноструктурного анализа:

Кислотно-основные свойства. Амиды обладают слабыми как кислотными, так и основными свойствами. Основность амидов лежит в пределах значений рА"вн+ от -0,3 до -3,5. Причиной пониженной основности аминогруппы в амидах является сопряжение неподеленной пары электронов атома азота с карбонильной группой. При взаимодействии с сильными кислотами амиды протонируются по атому кислорода как в разбавленных, так и в концентрированных растворах кислот. Такого рода взаимодействие лежит в основе кислотного катализа в реакциях гидролиза амидов:

Реакции ацилирования. Вследствие наличия в сопряженной системе амидов сильной электронодонорной аминогруппы электрофильность карбонильного атома углерода, а следовательно, и реакционная способность амидов в реакциях ацилирования очень низкая. Низкая ацилирующая способность амидов объясняется также и тем, что амид-ион NH2- - плохая уходящая группа. Из числа реакций ацилирования практическое значение имеет гидролиз амидов, который можно проводить в кислой и щелочной средах. Амиды гидролизуются намного труднее, чем другие функциональные производные карбоновых кислот. Гидролиз амидов проводится в более жестких условиях по сравнению с гидролизом сложных эфиров.

Кислотный гидролиз амидов - необратимая реакция, приводящая к образованию карбоновой кислоты и аммониевой соли:

Щелочной гидролиз тоже необратимая реакция; в результате ее образуются соль карбоновой кислоты и аммиак или амин:

Расщепление азотистой кислотой. При взаимодействии с азотистой кислотой и другими нитрозирующими агентами амиды превращаются в соответствующие карбоновые кислоты с выходами до 90%:


Угольная кислота и ее функциональные производные; фосген, хлоругольные эфиры, карбаминовая кислота и ее эфиры (уретаны). Карбамид (мочевина), основные и нуклеофильные свойства. Гидролиз мочевины. Ацилмочевины (уреиды), уреидокислоты. Взаимодействие мочевины с азотистой кислотой и гипобромитами. Гуанидин, основные свойства.

Угольная кислота традиционно не относится к органическим соединениям, но она сама и ее функциональные производные имеют определенное сходство с карбоновыми кислотами и их производными, поэтому и рассматриваются в настоящей главе.

Двухосновная угольная кислота - неустойчивое соединение, легко распадается на диоксид углерода и воду. В водном растворе углекислого газа лишь 0,1% его существует в виде угольной кислоты. Угольная кислота образует два ряда функциональных производных - полные (средние) и неполные (кислые). Кислые эфиры, амиды и другие производные нестабильны и разлагаются с выделением диоксида углерода:

Полный хлорангидрид угольной кислоты - фосген СОС1 2 - низкокипящая жидкость с запахом прелого сена, очень ядовит, вызывает отек легких, образуется в качестве вредной примеси при фотохимическом окислении хлороформа в результате неправильного хранения последнего.

В промышленности фосген получают радикальным хлорированием оксида углерода (II) в реакторе, заполненном активированным углем:

Фосген, подобно хлорангидридам карбоновых кислот, обладает высокой ацилирующей способностью, из него получают многие другие функциональные производные угольной кислоты.

При взаимодействии фосгена со спиртами образуются сложные эфиры двух типов - полные (карбонаты) и неполные (хлороугольные эфиры, или хлороформиаты), последние одновременно являются и сложными эфирами, и хлорангидридами. В качестве акцептора хлороводорода и нуклеофильного катализатора при этом используют третичные амины или пиридин.

Карбаминовая кислота - неполный амид угольной кислоты - неустойчивое соединение, распадается с образованием аммиака и диоксида углерода:

Эфиры карбаминовой кислоты - карбаматы, или уретаны, - устойчивые соединения, получаемые в результате присоединения спиртов к изоцианатам или ацилированием аммиака и аминов соответствующим хлороформиатом:

Мочевина (карбамид) - полный амид угольной кислоты - впервые была выделена из мочи И. Руэлем (1773). Она является важнейшим конечным продуктом белкового обмена у млекопитающих; взрослый человек выделяет в сутки 25-30 г мочевины. Мочевина была впервые синтезирована Ф. Вёлером (1828) при нагревании цианата аммония:

Этот синтез был первым примером получения органического вещества из неорганического соединения.

В промышленности мочевину получают из аммиака и диоксида углерода при повышенных давлении и температуре (180-230 °С, 150-200 атм):

Мочевина обладает слабыми основными свойствами (р.йГвн+0,1), образует соли с сильными кислотами. Соли азотной и щавелевой кислот нерастворимы в воде.

Мочевина протонируется по атому кислорода, а не азота. Это, вероятно, связано с делокализацией неподеленных пар электронов атомов азота за счет р,π-сопряжения.

В кипящей воде мочевина гидролизуется с образованием аммиака и диоксида углерода; кислоты и основания катализируют эту реакцию:

Первичными продуктами, образующимися при нагревании мочевины, являются аммиак и изоциановая кислота. Изоциановая кислота может тримеризоваться в циануровую кислоту или конденсироваться со второй молекулой мочевины с образованием биурета. В зависимости от скорости нагрева доминирует тот или иной путь разложения мочевины:

Действие гипогалогенитов также приводит к разложению мочевины. В зависимости от условий могут образовываться азот или гидразин; последний именно так получают в промышленности:

Мочевина проявляет нуклеофильные свойства также в реакциях алкилирования и ацилирования. Алкилирование мочевины в зависимости от алкилирующего агента может приводить к О- и TV-алкильным производным:

Гуанидин, или иминомочевину (H 2 N) 2 C=NH, в промышленности получают сплавлением мочевины с нитратом аммония или при нагревании эфиров ортоугольной кислоты с аммиаком:

Гуанидин - бесцветное кристаллическое вещество, обладает сильными основными свойствами. Высокая основность на уровне гидроксидов щелочных металлов обусловлена полной делокализацией положительного заряда в симметричном катионе гуанидиния:

Остатки гуанидина и бигуанидина содержатся в некоторых природных соединениях и лекарственных веществах.

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.