Решение задач по молекулярной биологии и генетике. Мутации в отличие от модификаций

Генофонд популяции может быть описан либо частотами генов, либо частотами генотипов. Представим себе, что в популяция имеется N диплоидных особей, различающихся по одной паре аллелей (А и a); D - означает число гомозигот по доминантному аллелю (АА); Р - число гомозигот по рецессивному аллелю (аа); Н - число гетерозигот (Аа). Таким образом, в популяции будет существовать три типа особей, имеющих соответственно генотипы АА, Аа, аа. Поскольку каждая особь с генотипом АА имеет два аллеля А, а каждый индивидуум Аа - по одному аллелю А, общее число аллелей А составит 2D+Н. Тогда р - частота встречаемостидоминантного аллеля А равна:

Частоту рецессивного аллеля (а) принято обозначать q. Сумма частот генов А и а равняется единице, р+q=1, отсюда q=1-р. Если ген представлен только двумя аллелями (А и а) с частотой р и q, то каковы будут частоты трех возможных генотипов?

На поставленный вопрос дает ответ закон Харди - Вайнберга. На первый взгляд может показаться, что особи с доминантным фенотипом будут встречаться чаще, чем с рецессивным. Однако отношение 3:1 соблюдается лишь в потомстве двух гетерозиготных по одним и тем же аллелям особей. Законы Менделя ничего не говорят о частотах генотипов и фенотипов в популяциях. О них идет речь в названном законе. Его сформулировали независимо друг от друга математик Дж. Харди в Англии и врач Вильгельм Вайнберг в Германии. Чтобы понять смысл этого закона, предположим, что самцы и самки в популяции скрещиваются случайно, или, что одно и то же, гаметы самцов и самок будут комбинироваться случайно, образуя зиготы. В зиготе объединяются материнские и отцовские хромосомы, каждая из гомологичных хромосом несет по одному аллелю из данной пары. Образование особей с генотипом АА обусловлено вероятностью получения аллеля А от матери и аллеля А от отца, т.е. рхр = р2.

Аналогично возникновение генотипа аа, частота встречаемости которого равна q2. Генотип Аа может возникнуть двумя путями: организм получает аллель А от матери, аллель а - от отца или, наоборот, аллель А - от отца, аллель а - от матери. Вероятность того и другого события равна pq, а суммарная вероятность возникновения генотипа Аа равна 2pq. Таким образом, частоту трех возможных генотипов можно выразить уравнением: (p+q)2=p2+2pq+q2=1

Из уравнения следует, что если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простыми соотношениями по формуле бинома Ньютона.

Разберем пример, когда частоты аллей данного гена в популяции будут 0,1А; 0,3a (геометрическое выражение закона Харди - Вайнберга для этого случая представлено на рис. 21). В потомстве на 100 зигот будет 49 гомозигот АА, 9 гомозигот аа и 42 гетерозиготы Аа, т.е. это соответствует уже известному нам соотношению генотипов - р2(АА) : 2pq(Ad): q2(aa).

Интересно, что в следующем поколении гаметы с аллелем А будут возникать с частотой 0,7 (0,49 от гомозигот АА +0,21 от гетерозигот Aa). Данное соотношение сохранится и в будущем. Частоты генов, а соответственно и генотипов остаются неизменными из поколения в поколение - это одно из основных положений закона Харди - Вайнберга. Однако названный закон носит вероятностный характер и поэтому реализуется в бесконечно большой популяции. При этом частоты генов остаются неизменными, если: существует неограниченная панмиксия; отсутствует естественный отбор; не возникают новые мутации тех же генов; не происходит миграция особей с иными генотипами из соседних популяций.

1) гомозиготна по рецессивному признаку

2) гомозиготна по доминантному признаку

3) гетерозиготна

4) образует два типа гамет

5) образует один тип гамет

6) чистая линия

6. Особь с генотипом АА:

1) гомозиготна по рецессивному признаку;

2) гомозиготна по доминантному признаку;

3) гетерозиготна;

4) образует два типа гамет;

5) образует один тип гамет;

6) чистая линия;

7. К менделирующим признакам у человека относятся

2) артериальное давление

3) белая прядь волос надо лбом

4) приросшая мочка уха

6) умение преимущественно владеть правой рукой

8 . Разновидности межаллельного взаимодействия генов:

1) кодоминирование

2) эпистаз

3) комплементарность

4) полное доминирование.

5) полимерия

6) неполное доминирование

9. Соотнесите генотипы людей с их группами крови:

Генотипы: группы крови:

1) I А I О А. первая группа крови

2) I О I О Б. вторая группа крови

3) I А I А В. третья группа крови

4) I В I О Г. четвёртая группа крови

Часть 3:

СИТУАЦИОННЫЕ ЗАДАЧИ

1. Определить пенетрантность аллеля, ответственного за проявление признака, если родилось 80 детей-носителей данного гена, но фенотипически проявилось у 30 потомков. а) 20% б) 75% в) 12% г) 10%

2. Могут ли родители с ахондроплазией (укорочение трубчатых костей, аутосомно-доминантный признак) иметь здорового ребенка? Если да, то с какой вероятностью?

а) да, 25% б) да, 50% в) да, 75% г) нет

3. У отца с группой крови ММ имеется ребенок с группами крови МN. Какой генотип НЕ может быть у матери ребенка?

а) NN б) MN в) MM

4. Ниже приведены различные комбинации фенотипов групп крови родителей и ребенка. Какие из них в действительности невозможны?

ОТЕЦ МАТЬ РЕБЕНОК

а) АВ А0 В

ЭТАЛОНЫ ОТВЕТОВ:

Часть 1

Часть 2

Часть 3 1 – б 2 – в 3 – в 4 – в

Дата ____________________

ЛАБОРАТОРНАЯ РАБОТА №5

Тема: Закономерности наследования признаков при ди – и полигибридном скрещивании. Независимое наследование признаков. Взаимодействие неаллельных генов

Цель занятия :

    на основании знаний основных законов Менделя и форм взаимодействия неаллельных генов уметь прогнозировать проявление признаков в потомстве.

Задачи занятия :

    уметь решать задачи на ди- и полигибридное скрещивание и на взаимодействие неаллельных генов.

Тесты контроля итогового уровня знаний (ответить на вопросы, предложенные преподавателем).

ВАРИАНТ №

1______ 6______

2______ 7______

3______ 8______

4______ 9______

5______ 10______

Количество баллов: _______

Законы Г. Менделя распространяются на признаки, наследующиеся моногенно с полным доминированием. Генотип представляет собой систему взаимодействующих генов. Взаимодействие происходит между аллельными и неаллельными ге­нами, локализованными в одной и разных хромосомах. Система генов образует сбалансированную генотипическую среду, которая влияет на функцию и проявление каждого гена. В результате фор­мируется определенный фенотип организма, все признаки которого строго координированы по времени, месту и силе проявления. Врачи должны составлять генетические схемы наследования менделирующих и неменделирующих признаков и рассчитывать вероятность их проявления в потомстве.

Вопросы для самоподготовки:

1. Закон независимого наследования признаков.

2. Гибридологический анализ при ди- и полигибридном скрещивании.

3. Условия, при которых соблюдается третий закон Г.Менделя и признаки наследуются независимо.

4. Неаллельные гены: определение, обозначение, расположение

5. Типы взаимодействия неаллельных генов. Гибридологический анализ взаимодействия неаллельных генов.

6. Дайте определение комплементарности. Какие признаки наследуются у человека комплементарно.

7. Обоснуйте явление эпистаза.

8. Какие существуют виды эпистаза?

9. Эпистатические (супрессоры, ингибиторы) и гипостатические (подавляемые) гены. Какие признаки у человека наследуются по типу эпистаза?

10. Объясните явление полимерии. Какие признаки у человека наследуются полимерно?

11. Нарушает ли взаимодействие между неаллельными генами закон независимого их наследования?

12. Объясните механизм «эффекта» положения генов, приведите примеры наследования

признаков у человека.

Основные термины

Основы учения о наследственности и изменчивости

Вариант I

Задание 1.

1. Способность организмов приобретать новые признаки в процессе жизнедеятельности называется:

2. Соматические клетки у большинства животных, высших растений и человека являются

3. Набор хромосом в соматических клетках человека равен:

а) 48 б) 46 в) 44 г) 23

4. Особи, в потомстве которых НЕ обнаруживается расщепление признака, называются:

а) гибридными б) гомозиготными в) гетерозиготными г) гемизиготными

5. Признак, который проявляется в гибридном поколении называется:

а) доминантный б) рецессивный в) гибридный г) мутантный

6. Фенотип – это совокупность:

а) Рецессивных генов б) Доминантных генов

в) Проявившихся внешне признаков г) Генотипов одного вида

7. Ген:

а) Единица наследственной информации б) Участок молекулы И-РНК

в) Участок ДНК г) Содержит определенный набор нуклеотидов

8. Гибриды 1-го поколения при моногибридном скрещивании гомозиготных особей

а) Единообразны

б) Обнаруживают расщепление по фенотипу - 1:3:1

в) Обнаруживают расщепление по фенотипу - 1:1

г) Обнаруживают расщепление по фенотипу - 1:2:1

9. Второй закон Менделя:

а) Описывает дигибридное скрещивание

б) Справедлив при скрещивании двух гетерозигот между собой

в) Утверждает, что при скрещивании гетерозигот между собой наблюдается расщепление 3:1 по фенотипу

10. Дигибридное скрещивание:

а) это скрещивание по двум парам аллельных генов

б) принципиально отличается от моногибридного скрещивания

в) позволило выявить рекомбинацию признаков

г) лежит в основе третьего закона Менделя

11. При скрещивании особей с генотипами аа и Аа наблюдается расщепление в потомстве по

фенотипу в соотношении

12. Парные гены, расположенные в гомологичных хромосомах и определяющие окраску

цветков гороха, называют

а) сцепленными б) рецессивными в) доминантными г) аллельными

13. Особь с генотипом ААВв дает гаметы:

а) АВ, Ав, аВ, ав б) АВ, Ав в) Ав, аВ г) Аа, Вв, АА, ВВ

14. В ядре яйцеклетки человека содержится 23 хромосомы, а в ядре мужской клетки:

а) 24 б) 23 в) 46 г) 32

15. Хромосомный набор половых клеток женщин содержит:

а) две ХХ – хромосомы б) 22 аутосомы и одну Х – хромосому

в) 44 аутосомы и одну Х – хромосому г) 44 аутосомы и две Х – хромосомы

16. Может ли дочь заболеть гемофилией, если её отец гемофилик :

а) может, т.к. ген гемофилии расположен в У- хромосоме

б) может, если мать является носителем гена гемофилии

в) не может, т.к. она гетерозиготна по Х-хромосоме

г) не может, если мать носительница гена гемофилии

17. Границы фенотипической изменчивости называются:
а) Вариационным рядом б) Вариационной кривой в) Нормой реакции г) Модификацией
18. Поворот участка хромосомы на 180° называется…
а) Транслокация б) Дупликация в) Делеция г) Инверсия

19. Изменчивость, которая не затрагивает гены организма и не изменяет наследственный

материал, называется…
а) Генотипической изменчивостью б) Комбинативной изменчивостью
в) Мутационной изменчивостью г) Фенотипической изменчивостью

20. Мутации, которые происходят в половых клетках называются…
а) Соматическими б) Генеративными в) Полезными г) Генными

21. Выпадение четырех нуклеотидов в ДНК – это:

а) генная мутация; б) хромосомная мутация; в) геномная мутация.

22. Норма реакции признака:

а) передается по наследству; б) зависит от окружающей среды; в) формируется в онтогенезе.

Задание 2.

1. Мутации в отличие от модификаций:

а) наследуются б) не наследуются

в) возникают случайно г) соответствуют воздействию внешней среды

д) возникают под воздействием радиации е) всегда являются доминантными

2. Соматические мутации:

а) Проявляются у организмов, у которых возникли; б) По наследству не передаются;

в) Проявляются у потомства; г) Возникают в клетках тела;

д) Могут передаваться по наследству; е) Возникают в гаметах.

Здание 3.

Установите соответствие:

Между видами изменчивости и их характеристикой.

Характеристика: Вид изменчивости:

  1. Носит групповой характер. А) модификационная;
  2. Носит индивидуальный характер. Б) мутационная.
  3. Наследуется.
  4. Не наследуется.
  5. Обусловлена нормой реакции организма.
  6. Неадекватна изменениям условий среды.

Задание 4.

Определите верное и неверное суждение:

1. Синдром Дауна вызывается хромосомной мутацией.

2. Генные и точечные мутации – это синонимы.

3. Изменения признаков, вызванные факторами внешней среды, не наследуются.

4. Мутации, несовместимые с жизнью, называют летальными.

5. Мутации в соматических клетках передаются по наследству.

6. Источником комбинативной изменчивости является мейоз.

7. Полиплоидия вызывается хромосомной мутацией.

8. Модификационная изменчивость – изменение генотипа в пределах нормы реакции.

9. Набор половых хромосом самца любого вида животных обозначается как ХУ.

10. У-хромосома содержит все гены, аллельные генам Х-хромосомы.

11. Признаки, сцепленные с Х-хромосомой, проявляются у мужчин независимо от их доминантности или рецессивности.

12. Женщина, носительница гена гемофилии с вероятностью в 50% - передает этот ген своим детям.

13. Сын носительницы имеет 100% вероятность заболеть гемофилией.

Проверочная тестовая работа

по теме: Основы учения о наследственности и изменчивости

Вариант № 2

1. Наука, изучающая наследственность и изменчивость:

а) цитология б) селекция в) генетика г) эмбриология

2. Способность организмов передавать свои признаки и гены от родителей к потомкам

называется:

а) генетика б) изменчивость в) селекция г) наследственность

3. Половые клетки у большинства животных, человека являются

а) Полиплоидными б) Диплоидными в) Гаплоидными г) Тетраплоидными

4. Единица наследственной информации – это:

а) Генотип б) Фенотип в) Ген г) Белок

5. Генотип:

а) Совокупность всех генов особи б) Совокупность всех признаков организмов

в) Всегда полностью совпадает с фенотипом г) Определяет пределы нормы реакции организма

6. Муж и жена имеют ямочки на щеках, а их дети нет. Доминантный или рецессивный признак

наличия ямочек на щеках:

а) доминантный б) рецессивный в) сцепленный с полом г) сцепленный

7. Особи, в потомстве которых обнаруживается расщепление признака называются:

а) гибридными б) гомозиготными; в) гетерозиготными г) гемизиготными

8. Признак, который НЕ проявляется в гибридном поколении называют:

а) доминантный б) рецессивный в) промежуточный г) мутантным

9. Какая часть особей с рецессивным признаком проявится в первом поколении при скрещивании

двух гетерозиготных по данному признаку родителей?

а) 75% б) 50% в) 25% г) 0%

10. При скрещивании особей с генотипами Аа и Аа (при условии полного доминирования)

наблюдается расщепление в потомстве по фенотипу в соотношении

а) 1:1 б) 3:1 в) 9:3:3:1 г) 1:2:1

11. Третий закон Менделя:

а) Описывает моногибридное скрещивание

б) Это закон независимого наследования признаков

в) Утверждает, что каждая пара признаков наследуется независимо от других

г) Утверждает, что при дигибридном скрещивании в F 2 наблюдается расщепление по генотипу 9:3:3:1

12. Наследование признаков, определяемых, локализованными в половых хромосомах

называется:

а) дигибридным б) сцепленным в) моногибридным г) сцепленным с полом

13. Какая хромосома будет иметь решающее значение при определении женского пола у птиц?

а) Х-хромосома сперматозоида б) Y-хромосома сперматозоида

в) Х-хромосома яйцеклетки г) Y-хромосома яйцеклетки

14. Особь с генотипом АаВв дает гаметы:

а) АВ, Ав, аВ, ав б) АВ, ав в) Ав, аВ г) Аа, Вв, АА, ВВ

15. Хромосомный набор половых клеток мужчин содержит:

а) Одну Х – хромосому и одну У – хромосому б) 22 аутосомы и одну Х или У хромосому

в) 44 аутосомы и ХУ – хромосомы г) 44 аутосомы, одну Х или У – хромосомы

16. Мутации могут быть обусловлены

а) новым сочетанием хромосом в результате слияния гамет

б) перекрестом хромосом в ходе мейоза

в) новыми сочетаниями генов в результате оплодотворения

г) изменениями генов и хромосом

17. Потеря участка хромосомы называется…
а) Делеция б) Дупликация в) Инверсия г) Транслокация
18. Синдром Шерешевского-Тернера может возникнуть в результате…
а) Полиплоидии б) Полисомии в) Трисомии г) Моносомии

19. Укажите направленную изменчивость:
а) Комбинативная изменчивость б) Мутационная изменчивость
в) Соотносительная изменчивость г) Модификационная изменчивость
20. Кроссинговер – это механизм…
а) Комбинативной изменчивости б) Мутационной изменчивости
в) Фенотипической изменчивости г) Модификационной изменчивости

21. Ненаследственную изменчивость называют:

а) неопределенной; б) определенной; в) генотипической.

22.Полиплоидные организмы возникают в результате:

а) геномных мутаций; б) генных мутаций;

в) модификационной изменчивости; г) комбинативной изменчивости.

Задание 2.

Выберите три верных ответа из шести.

1.Мутациями являются:

а) позеленение клубней картофеля на свету б) брахидактилия

в) синдром Дауна г) искревление ствола сосны, растущей в трещине скалы

д) превращение головастика в лягушку е) возникновение белых глаз у дрозофилы

2. Норма реакции у организмов:

а) определяется совокупностью генов;

б) разная для разных признаков;

в) существует непродолжительное время и может меняться;

г) позволяет им приспосабливаться к условиям существования;

д) одинаковая у разных признаков одного организма;

е) определяется условиями среды.

Задание 3.

Установите соответствие:

Между видами мутаций и их характеристиками.

Характеристика: Виды мутаций:

  1. Число хромосом увеличилось на 1-2. А) генные;
  2. Один нуклеотид ДНК заменяется на другой. Б) хромосомные;
  3. Участок одной хромосомы перенесен на другую. В) геномные.
  4. Произошло выпадение участка хромосомы.
  5. Участок хромосомы повернут на 180°.
  6. Произошло кратное увеличение числа хромосом.

Задание 4. Выберите неправильные утверждения.

  1. Синдром Дауна вызывается геномной мутацией.
  2. Генные и геномные мутации – это синонимы.
  3. Изменения признаков, вызванные факторами внешней среды, наследуются.
  4. Мутации, вызывающие понижение жизнеспособности, называются полулетальными.
  5. Ненаследственная изменчивость – изменение фенотипа в пределах нормы реакции.
  6. Искусственный мутагенез применяют для увеличения количества мутаций.
  7. Мутации в половых клетках передаются по наследству.
  8. Источником комбинативной изменчивости является митоз.
  9. Гены, определяющие развитие разных признаков, называются аллельными.
  10. Совокупность генов организма составляет его фенотип.
  11. Примером анализирующего скрещивания может служить скрещивание Аа х аа.
  12. Группы сцепления генов находятся в разных хромосомах.
  13. Условия внешней среды, как правило, изменяют норму реакции организма.

Скачать:


Предварительный просмотр:

Ответы.

Вариант 1

Задание1.

Задание 2. 1) а,в,д; 2) а,б,г.

Задание 3. А – 1,4,5; Б – 2,3,6.

В пределах генофонда популяции доля генотипов, содержащих разные аллели одного гена; при соблюдении некоторых условий из поколения в поколение не изменяется. Эти условия описываются основным законом популяционной генетики, сформулированным в 1908 г. английским математиком Дж. Харди и немецким врачом-генетиком Г. Вайнбергом. «В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Уравнение Харди-Вайнберга в решении генетических задач

Хорошо известно, что этот закон применим лишь для идеальных популяций: достаточно высокая численность особей в популяции; популяция должна быть панмиксной, когда нет ограничения к свободному выбору полового партнера; практически должно отсутствовать мутирование изучаемого признака; отсутствует приток и отток генов и нет естественного отбора.

Закон Харди-Вайнберга формулируется следующим образом:

в идеальной популяции соотношение частот аллелей генов и генотипов из поколения в поколение является величиной постоянной и соответствует уравнению:


p 2 +2pq + q 2 = 1

Где p 2 — доля гомозигот по одному из аллелей; p — частота этого аллеля; q 2 — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот.

Что значит “соотношение частот аллелей генов” и “соотношение генотипов” - величины постоянные? Чему равны эти величины?

Пусть частота встречаемости какого-либо гена в доминантном состоянии (А) равна p, а рецессивного аллеля (а) этого же гена равна q (можно и наоборот, а можно и вообще одной буквой, выразив одно обозначение из другого) и понимая, что сумма частот доминантного и рецессивного аллелей одного гена в популяции равна 1, мы получим первое уравнение:

1) p + q = 1

Откуда берется само уравнение Харди-Вайнберга? Вы помните, что при моногибридном скрещивании гетерозиготных организмов с генотипами Аа х Аа по второму закону Менделя в потомстве мы будем наблюдать появление разных генотипов в соотношении 1АА: 2 Аа: 1аа .

Поскольку частота встречаемости доминантного аллельного гена А у нас обозначена буквой р, а рецессивного аллеля а буквой q, то сумма частот встречаемости самих генотипов организмов (АА, 2Аа и аа), имеющих эти же аллельны гены А и а, будет тоже равна 1 , то:

2) p 2 AA + 2pqAa + q 2 aa = 1

В задачах по популяционной генетике, как правило, требуется:
а) найти частоты встречаемости каждого из аллельных генов по известному соотношению частот генотипов особей;

Б) или наоборот, найти частоту встречаемости какого-либо из генотипов особей по известной частоте встречаемости доминантного или рецессивного аллеля изучаемого признака.

Так вот, подставляя известное значение частоты встречаемости какого-то из аллелей гена в первую формулу и найдя значение частоты встречаемости второго аллеля, мы всегда сможем по уравнению Харди-Вайнберга найти частоты встречаемости самих различных генотипов потомства.

Обычно некоторые действия (из-за их очевидности) решаются в уме. Но, чтобы было ясно то, что и так очевидно, надо хорошо понимать, что собой представляют буквенные обозначения в формуле Харди-Вайнберга.

Положения закона Харди-Вайнберга применимы и к множественным аллелям. Так, если аутосомный ген представлен тремя аллелями (А, а1 и а2), то формулы закона приобретают следующий вид:

РА + qа1 + ra2 = 1;

Р 2 АА+ q 2 а1а1 + r 2 а2а2 + 2рqАа1 + 2рrАа2 + 2qrа1а2 = 1 .

«В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Допустим, что в генофонде популяции, удовлетворяющей описанным условиям, некий ген представлен аллелями А 1 и А 2 , обнаруживаемыми с частотой р и q . Так как других аллелей в данном генофонде не встречается, то р+q = 1. При этом q = 1—р.

Соответственно особи данной популяции образуют р гамет с аллелемА 1 и q гамет с аллелем А 2 . Если скрещивания происходят случайным образом, то доля половых клеток, соединяющихся с гаметамиА 1 , равна р, а доля половых клеток, соединяющихся с гаметами A 2 , — q. Возникающее в результате описанного цикла размножения поколение F 1 образовано генотипами A l A 1 , A 1 A 2 , A 2 A 2 , количество которых соотносится как (р + q) (р + q) = р 2 + 2pq + q 2 (рис. 10.2). По достижении половой зрелости особи AlAi и АгА2 образуют по одному типу гамет — A 1 или A 2 — с частотой, пропорциональной числу организмов указанных генотипов (р и q). Особи A 1 A 2 образуют оба типа гамет с равной частотой 2pq /2.


Рис. Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов (закон Харди—Вайнберга)

Таким образом, доля гаметA 1 в поколенииF 1 составит р 2 + 2pq/2 = р 2 + р(1—р) = p, а доля гамет А 2 будет равна q 2 + 2pq/2 = q 2 + + q (l -q ) = q .

Так как частоты гамет с разными аллелями в поколенииfi в сравнении с родительским поколением не изменены, поколение F 2 будет представлено организмами с генотипами A l A 1 , A 1 A 2 и А 2 А 2 в том же соотношении р 2 + 2pq + q 2 . Благодаря этому очередной цикл размножения произойдет при наличии р гаметA 1 и q гамет А 2 . Аналогичные расчеты можно провести для локусов с любым числом аллелей. В основе сохранения частот аллелей лежат статистические закономерности случайных событий в больших выборках.

Уравнение Харди—Вайнберга в том виде, в котором оно рассмотрено выше, справедливо для аутосомных генов. Для генов, сцепленных с полом, равновесные частоты генотипов A l A 1 , A 1 A 2 и А 2 А 2 совпадают с таковыми для аутосомных генов: р 2 + 2pq + q 2 . Для самцов (в случае гетерогаметного пола) в силу их гемизиготности возможны лишь два генотипаA 1 — или А 2 —, которые воспроизводятся с частотой, равной частоте соответствующих аллелей у самок в предшествующем поколении: р и q. Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с хромосомой Х генов, у самцов встречаются чаще, чем у самок.

Так, при частоте аллеля гемофилии, равной 0,0001, это заболевание у мужчин данной популяции наблюдается в 10 000 раз чаще, чем у женщин (1 на 10 тыс. у первых и 1 на 100 млн. у вторых).

Еще одно следствие общего порядка заключается в том, что в случае неравенства частоты аллеля у самцов и самок разность между частотами в следующем поколении уменьшается вдвое, причем меняется знак этой разницы. Обычно требуется несколько поколений для того, чтобы возникло равновесное состояние частот у обоих полов. Указанное состояние для аутосомных генов достигается за одно поколение.

Закон Харди — Вайнберга описывает условия генетической стабильности популяции. Популяцию, генофонд которой не изменяется в ряду поколений, называют менделевской. Генетическая стабильность менделевских популяций ставит их вне процесса эволюции, так как в таких условиях приостанавливается действие естественного отбора. Выделение менделевских популяций имеет чисто теоретическое значение. В природе эти популяции не встречаются. В законе Харди — Вайнберга перечислены условия, закономерно изменяющие генофонды популяций. К указанному результату приводят, например, факторы, ограничивающие свободное скрещивание (панмиксию), такие, как конечная численность организмов в популяции, изоляционные барьеры, препятствующие случайному подбору брачных пар. Генетическая инертность преодолевается также благодаря мутациям, притоку в популяцию или оттоку из нее особей с определенными генотипами, отбору.

Примеры решений некоторых заданий с применением уравнения Харди-Вайнберга.


Задача 1. В популяции человека количество индивидуумов с карим цветом глаз составляет 51%, а с голубым - 49%. Определите процент доминантных гомозигот в данной популяции.

Сложность решения подобных заданий в их кажущейся простоте. Раз так мало данных, то и решение должно быть как-будто очень короткое. Оказывается не очень.

По условию подобного рода заданий нам, как правило, дается информация об общем количестве фенотипов особей в популяции. Поскольку фенотипы особей в популяции с доминантными признаками могут быть представлены как гомозиготными по генотипу особями АА, так и гетерозиготными Аа, то для определения частот встречаемости каких-то конкретных генотипов особей в этой популяции, необходимо предварительно вычислить частоты встречаемости аллелей гена А и а по отдельности.

Как мы должны рассуждать при решении этой задачи?

Поскольку известно, что карий цвет глаз доминирует над голубым, обозначим аллель, отвечающий за проявление признака кареглазости А, а аллельный ему ген, ответственный за проявление голубых глаз, соответственно, а. Тогда кареглазыми в исследуемой популяции будут люди как с генотипом АА (доминантные гомозиготы, долю которых и надо найти по условию задачи), так и - Аа гетерозиготы), а голубоглазыми - только аа (рецессивные гомозиготы).

По условию задачи нам известно, что количество людей с генотипами АА и Аа составляет 51%, а количество людей с генотипом аа - 49%. Как, исходя из этих статистических данных (большая выборка должна быть, репрезентативная), можно вычислить процент кареглазых людей только с генотипом АА?

Для этого вычислим частоты встречаемости каждого из аллельных генов А и а в данной популяции людей. Закон Харди-Вайнберга, применяемый для больших свободно скрещивающихся популяций, как раз и позволит нам сделать это.

Обозначив частоту встречаемости аллеля А в данной популяции буквой q, имеем частоту встречаемости аллельного ему гена а = 1 - q. (Можно было бы обозначить частоту встречаемости аллельного гена а отдельной буквой, как в тексте выше - это кому как удобнее). Тогда сама формула Харди-Вайнберга для расчета частот генотипов при моногибридном скрещивании при полном доминировании одного аллельного гена над другим будет выглядеть вот так:

q 2 AA+ 2q(1 - q)Aa + (1 - q) 2 aa = 1.

Ну, а теперь уже все просто, вы наверняка все догадались, что в этом уравнении нам известно, а что следует найти?

(1 - q) 2 = 0,49 - это частота встречаемости людей с голубыми глазами.

Находим значение q: 1 - q = корень квадратный из 0,49 = 0,7; q = 1 - 0,7 = 0,3, тогда q2 = 0,09.
Это значит, что частота кареглазых гомозиготных особей АА в данной популяции будет составлять 0,09 или доля их будет равна 9% .

Задача 2. У клевера лугового поздняя спелость доминирует над скороспелостью и наследуется моногено. При апробации установлено, что 4% растений относятся к раннеспелому типу клевера, какую часть от позднеспелых растений составляют гетерозиготы?

В данном контексте апробация означает оценку чистоты сорта . А что, разве сортом не является чистая линия как сорта гороха у Менделя, например. Теоретически “да”, но на практике (поля то большие - это не опытные делянки гениального Менделя) в каждом производственном сорте могут находиться в каком-то количестве и “мусорные” аллели генов.

В данном случае с позднеспелым сортом клевера, если бы сорт был чистым, присутствовали бы только растения с генотипом АА. Но сорт оказался на момент проверки (апробации) не очень чистым, так как 4% особей составляли раннеспелые растения с генотипом аа. Значит в этот сорт “затесались” аллели а.

Так вот, раз они “затесались”, то в данном сорте должны присутствовать и особи, хотя по фенотипу и позднеспелые, но гетерозиготные с генотипом Аа - их количество нам и надо определить?

По условию задачи 4% особей с генотипом аа составят 0,04 часть от всего сорта. Фактически это q 2 , значит частота встречаемости рецессивного аллеля а равна q = 0,2. Тогда частота встречаемости доминантного аллеля А равна p = 1 - 0,2 = 0,8.

Отсюда количество позднеспелых гомозигот p2 = 0,64 или 64%. Тогда количество гетерозигот Аа будет составлять 100% - 4% - 64% = 32%. Поскольку всего позднеспелых растений 96%, то доля гетерозигот среди них составит: 32 х 100: 96 = 33,3% .


Задача 3. С применением формулы Харди-Вайнберга при неполном доминировании

При обследовании популяции каракульских овец было выявлено 729 длинноухих особей (АА), 111 короткоухих (Аа) и 4 безухих (аа). Вычислите наблюдаемые частоты фенотипов, частоты аллелей, ожидаемые частоты генотипов по формуле Харди-Вайнберга.

Это задача по неполному доминированию, поэтому, распределение частот генотипов и фенотипов совпадают и их можно было бы определить, исходя из имеющихся данных. Для этого надо просто найти сумму всех особей популяции (она равна 844), найти долю длинноухих, короткоухих и безухих сначала в процентах (86.37, 13.15 и 0.47, соответственно) и в долях частот (0.8637, 0.1315 и 0.00474).

Но в задании сказано применить для расчетов генотипов и фенотипов формулу Харди-Вайнберга и, к тому же, рассчитать частоты аллелей генов А и а. Так вот для расчета самих частот аллелей генов без формулы Харди-Вайнберга не обойтись.

Обратите внимание, что в этой задаче, в отличие от предыдущей, для обозначения частот аллельных генов, мы будем пользоваться приемом обозначений не как в первой задаче, а как разбиралось выше в тексте. Понятно, что результат от этого не изменится, но вы будете в праве в будущем использовать любой из этих способов обозначений, какой вам кажется более удобным для понимания и проведения самих расчетов.

Обозначим частоту встречаемости аллеля А во всех гаметах популяции овец буквой р, а частоту встречаемости аллеля а - буквой q. Помним, что сумма частот аллельных генов p + q = 1.

Так как по формуле Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 имеем, что частота встречаемости безухих q2 равна 0.00474, то извлекая квадратный корень из числа 0.00474 мы находим частоту встречаемости рецессивного аллеля а. Она равна 0.06884.

Отсюда мы можем найти частоту встречаемости и доминантного аллеля А. Она равна 1 - 0.06884 = 0.93116.

Теперь по формуле можем вычислить снова частоты встречаемости длинноухих (АА), безухих (аа) и короткоухих (Аа) особей. Длинноухих с генотипом АА будет р 2 = 0.931162 = 0.86706, безухих с генотипом аа будет q 2 = 0.00474 и короткоухих с генотипом Аа будет 2pq = 0,12820. (Вновь полученные числа, рассчитанные по формуле, почти совпадают с вычисленными изначально, что говорит о справедливости закона Харди-Вайнберга) .

Задача 4. Почему доля альбиносов в популяциях так мала

В выборке, состоящей из 84 000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а, а также частоту гетерозиготных растений.

Обозначим частоту встречаемости доминантного аллельного гена А буквой p, а рецессивного а - буквой q. Тогда, что нам может дать формула Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 для применения её к этой задаче?

Поскольку общая численность всех особей данной популяции ржи нам известна 84000 растений, а в частях это и есть 1, то доля гомозиготных альбиносных особей с генотипом аа равная q2, которых всего 210 штук, составит q2 = 210: 84000 = 0,0025, тогда q = 0,05; p = 1 - q = 0,95 и тогда 2pq = 0,095.

Ответ: частота аллеля а - 0,05; частота аллеля А - 0,95; частота гетерозиготных растений с генотипом Аа составит 0,095 .

Задача 5. Выращивали кроликов шиншилл, а получили брак в виде альбиносиков

У кроликов окраска волосяного покрова “шиншилла” (ген Cch) доминирует над альбинизмом (ген Ca). Гетерозиготы CchCa имеют светло-серую окраску. На кролиководческой ферме среди молодняка кроликов шиншилл появились альбиносы. Из 5400 крольчат 17 оказались альбиносами. Пользуясь формулой Харди-Вайнберга, определите, сколько было получено гомозиготных крольчат с окраской шиншилла.

А как Вы думаете, полученная выборка в популяции кроликов в количестве 5400 экземпляров, может позволить нам использовать формулу Харди-Вайнберга? Да выборка значительная, популяция изолированная (кролиководческая ферма) и действительно можно применить в расчетах формулу Харди-Вайнберга.Чтобы правильно её использовать, надо четко представлять что нам дано, а что требуется найти.

Лишь для удобства оформления, обозначим генотип шиншилл АА (количество их нам и надо будет определить), генотип альбиносиков аа, тогда генотип гетерозиготных серячков будет обозначаться Аа.

Если “сложить” всех кроликов с разными генотипами в изучаемой популяции: АА + Аа + аа, то это и будет в сумме 5400 штук особей.
Да еще нам известно, что кроликов с генотипом аа было 17 штук. Как же нам теперь, не зная сколько было гетерозиготных серых кроликов с генотипом Аа, определить сколько в этой популяции шиншилл с генотипом АА?

Как мы можем видеть эта задача является почти “копией” первой, только там нам даны были результаты подсчетов в популяции людей кареглазых и голубоглазых индивидов в %, а здесь фактически нам известна сама численность альбиносов кроликов 17 штук и всех гомозиготных шиншилл и гетерозиготных серячков в сумме: 5400 - 17 = 5383 штук.

Примем 5400 штук всех кроликов за 100%, тогда 5383 кролика (сумма генотипов АА и Аа) составит 99,685% или в частях это будет 0,99685.

Q 2 + 2q(1 - q) = 0,99685 - это частота встречаемости всех шиншилл и гомозиготных (АА), и гетерозиготных (Аа).

Тогда из уравнения Харди-Вайнберга: q2 AA+ 2q(1 - q)Aa + (1 - q)2aa = 1 , находим

(1 - q) 2 = 1 - 0,99685 = 0,00315 - это частота встречаемости альбиносных кроликов с генотипом аа. Находим чему равна величина 1 - q. Это корень квадратный из 0,00315 = 0,056. А q тогда равняется 0,944.

Q 2 равняется 0,891, а это и есть доля гомозиготных шиншил с генотипом АА. Так как эта величина в % составит 89,1% от 5400 особей, то количество гомозиготных шиншилл будет 4811 шт .

Задача 6. Определение частоты встречаемости гетерозиготных особей по известной частоте встречаемости рецессивных гомозигот

Одна из форм глюкозурии наследуется как аутосомно-рецессивный признак и встречается с частотой 7:1000000. Определить частоту встречаемости гетерозигот в популяции.

Обозначим аллельный ген, отвечающий за проявление глюкозурии а, так как сказано, что это заболевание наследуется как рецессивный признак. Тогда аллельный ему доминантный ген, отвечающий за отсутствие болезни обозначим А.

Здоровые особи в популяции людей имеют генотипы АА и Аа; больные особи имеют генотип только аа.

Обозначим частоту встречаемости рецессивного аллеля а буквой q, а доминантного аллеля А - буквой р.

Поскольку нам известно, что частота встречаемости больных людей с генотипом аа (а это значит q 2) равна 0,000007, то q = 0,00264575

Так как p + q = 1, то р = 1 — q = 0,9973543, и p2 = 0,9947155

Теперь подставив значения р и q в формулу:

P2AA + 2pqAa + q2aa = 1,

Найдем частоту встречаемости гетерозиготных особей 2pq в популяции людей:

2pq = 1 - p 2 — q 2 = 1 - 0,9947155 - 0,000007 = 0,0052775 .

Задача 7. Как и предыдущая задача, но про альбинизм

Альбинизм общий (молочно-белая окраска кожи, отсутствие меланина в коже, волосяных луковицах и эпителии сетчатки) наследуется как рецессивный аутосомный признак. Заболевание встречается с частотой 1: 20 000 (К. Штерн, 1965). Определите процент гетерозиготных носителей гена.

Так как этот признак рецессивный, то больные организмы будут иметь генотип аа — это их частота равна 1: 20 000 или 0,00005.

Частота аллеля а составит корень квадратный из этого числа, то есть 0,0071. Частота аллеля А составит 1 — 0,0071 = 0,9929, а частота здоровых гомозигот АА будет 0,9859.

Частота всех гетерозигот 2Аа = 1 — (АА + аа) = 0,014 или 1,4% .

Задача 8. Кажется, как все просто, когда знаешь как решать

Популяция европейцев по системе групп крови резус содержит 85% резус положительных индивидуумов. Определите насыщенность популяции рецессивным аллелем.

Нам известно, что аллельный ген, отвечающий за проявление резус положительной крови является доминантным R (обозначим частоту его встречаемости буквой p), а резус отрицательный - рецессивным r (обозначим частоту встречаемости его буквой q).

Поскольку в задаче сказано, что на долю p 2 RR + 2pqRr приходится 85% людей, значит на долю резус-отрицательных фенотипов q 2 rr будет приходиться 15% или частота встречаемости их составит 0,15 от всех людей европейской популяции.

Тогда частота встречаемости аллеля r или ”насыщенность популяции рецессивным аллелем” (обозначенная буквой q) составит корень квадратный из 0,15 = 0,39 или 39%.

Задача 9. Главное знать что такое пенетрантность

Врожденный вывих бедра наследуется доминантно. Средняя пенетрантность составляет 25%. Заболевание встречаются с частотой 6:10000. Определите число гомозиготных особей в популяции по рецессивному признаку.

Пенетрантность - это количественный показатель фенотипической изменчивости проявления гена .

Пенетрантность измеряется в процентном отношении числа особей, у которых данный ген проявился в фенотипе к общему числу особей, в генотипе которых этот ген присутствует в необходимом для его проявления состоянии (гомозиготном — в случае рецессивных генов или гетерозиготном — в случае доминантных генов). Проявление гена у 100% особей с соответствующим генотипом называется полной пенетрантностью, а в остальных случаях — неполной пенетрантностью.

За изучаемый признак отвечает доминантный аллель, обозначим его А. Значит организмы, имеющие данное заболевание имеют генотипы АА и Аа.

Известно, что фенотипически вывих бедра выявляется у 6 организмов из всей популяции (10000 обследованных), но это лишь одна четвертая часть из всех людей, реально имеющих генотипы АА и Аа (так как сказано, что пенетрантность составляет 25%).

Значит на самом деле людей с генотипами АА и Аа в 4 раза больше, то есть 24 из 10000 или 0,0024 часть. Тогда людей с генотипом аа будет 1 - 0,0024 = 0,9976 часть или 9976 человек из 10000.

Задача 10. Если болеют только мужчины

Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин ген подагры не проявляется, у мужчин пенетрантность его равна 20% (В.П. Эфроимсон, 1968). Определите генетическую структуру популяции по анализируемому признаку, исходя из этих данных.

Так как подагра выявляется у 2% мужчин, то есть у 2 человек из 100 с пенетрантностью 20%, то реально носителями генов подагры является в 5 раз больше мужчин, то есть 10 человек из 100.

Но, так как мужчины составляют лишь пол популяции, то всего людей с генотипами АА + 2Аа в популяции будет 5 человек из 100, а, значит, 95 из 100 будут с генотипом аа.

Если частота встречаемости организмов с генотипами аа составляет 0,95, то частота встречаемости рецессивного аллеля а в этой популяции равна корню квадратному из числа 0,95 = 0,975. Тогда частота встречаемости доминантного аллеля ”А” в этой популяции равна 1 - 0,975 = 0,005 .

Задача 11. Как мало людей устойчивых к ВИЧ инфекции

Устойчивость к ВИЧ-инфекции связана с наличием в генотипе некоторых рецессивных генов, например, ССR и SRF. Частота рецессивного аллеля ССR-5 в русской популяции составляет 0,25%, а аллеля SRF - 0,05%. В казахской популяции частота этих аллелей соответственно - 0,12% и 0,1%. Рассчитайте частоты организмов, имеющих повышенную устойчивость к ВИЧ-инфекции, в каждой из популяций.

Понятно, что повышенной устойчивостью к ВИЧ-инфекции будут обладать лишь гомозиготные организмы с генотипами аа. Организмы же с генотипами АА (гомозиготы) или Аа (гетерозиготы) не устойчивы к ВИЧ инфекции.

В русской популяции устойчивых организмов по аллельному гену ССR будет О,25% в квадрате = 0,0625%, а по аллельному гену SRF 0,05% в квадрате = 0,0025%.

В казахской популяции устойчивых организмов по аллельному гену ССR будет О,12% в квадрате = 0,0144%, а по аллельному гену SRF 0,1% в квадрате = 0,01%.

Закон Харди–Вайнберга

Мы будем рассматривать менделевские популяции :

– особи диплоидны;
– размножаются половым путем;

численность популяции бесконечно большая; а также панмиктические популяции , где случайное свободное скрещивание особей протекает при отсутствии отбора.

Рассмотрим в популяции один аутосомный ген, представленный двумя аллелями А и а .

Введем обозначения:

N – общее число особей популяции
D – число доминантных гомозигот (АА )
H – число гетерозигот (Аа )
R – число рецессивных гомозигот (аa )

Тогда: D + H + R = N.

Так как особи диплоидны, то число всех аллелей по рассматриваемому гену будет 2N.

Суммарное число аллелей А и а :

А = 2D + Н;
а = Н + 2R.

Обозначим долю (или частоту) аллеля А через p, а аллеля а – через g, тогда:

Поскольку ген может быть представлен аллелями А или а и никакими другими, то p + g = 1.

Состояние популяционного равновесия математической формулой описали в 1908 г. независимо друг от друга математик Дж.Харди в Англии и врач В.Вайнберг в Германии (закон Харди–Вайнберга).

Если p – частота гена A , а g – частота гена а , с помощью решетки Пеннета можно представить в обобщенном виде характер распределения аллелей в популяции:

Соотношение генотипов в описанной популяции:

p 2 АА : 2pgАа : g 2 аа.

Закон Харди–Вайнберга в простейшем виде:

p 2 АА + 2pgАа + g 2 аа = 1.

Задача № 36

Популяция содержит 400 особей, из них с генотипами АА – 20, Аа – 120 и аа – 260 особей. Определите частоты генов А и а .

Дано:

Решение:

N = 400
D = 20
H = 120
R = 260
p – ?
g – ?

Ответ : частота гена А – 0,2; гена а – 0,8.

Задача № 37

У крупного рогатого скота породы шортгорн рыжая масть доминирует над белой. Гибриды от скрещивания рыжих и белых – чалой масти. В районе, специализирующемся на разведении шортгорнов, зарегистрировано 4169 рыжих животных, 3780 чалых и 756 белых. Определите частоту генов рыжей и белой окраски скота в данном раойне.

Ответ : частота гена рыжей окраски – 0,7; белой – 0, 3.

Задача № 38

В выборке, состоящей из 84 000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а , а также частоту гетерозиготных растений.

Ответ : частота генов А и а – 0,5.

Задача № 40
В популяции известны частоты аллелей p = 0,8 и g = 0,2. Определите частоты генотипов.

Ответ : частота аллеля А – 0,45; аллеля а – 0,55.

Задача № 42

В стаде крупного рогатого скота 49% животных рыжей масти (рецессив) и 51% черной масти (доминанта). Сколько процентов гомо- и гетерозиготных животных в этом стаде?

Ответ : в популяции 81% особей с генотипом АА , 18% с генотпом Аа и 1% с генотипом аа .

Занимательные генетические задачи

Задача № 44. «Сказка про драконов»

У исследователя было 4 дракона: огнедышащая и неогнедышащая самки, огнедышащий и неогнедышащий самцы. Для определения способности к огнедышанию у этих драконов были проведены всевозможные скрещивания.

1. Огнедышащие родители – все потомство огнедашащее.
2. Неогнедышащие родители – все потомство неогнедышащее.
3. Огнедышащий самец и неогнедышащая самка – в потомстве примерно поровну огнедышащих и неогнедышащих дракончиков.
4. Неогнедышащий самец и огнедышащая самка – все потомство неогнедышащее.
Считая, что признак определяется аутосомным геном, установите доминантный аллель и запишите генотипы родителей.

Решение :

По скрещиванию № 4 определяем: А – неогнедышащие, а – огнедышащащие; огнедышащие – ♀ аа и ♂ аа ; неогнедышащий самец – ♂ АА ;
по скрещиванию № 3: неогнедышащая самка – ♀ Аа .

Задача № 45. «Консультант фирмы «Коктейль».

Представьте себе, что вы – консультант небольшой фирмы «Коктейль», что в буквальном переводе с английского означает «петушиный хвост». Фирма разводит экзотические породы петухов ради хвостовых перьев, которые охотно закупают владельцы шляпных магазинов во всем мире. Длина перьев определяется геном А (длинные) и а (короткие), цвет: В – черные, b – красные, ширина: С – широкие, с – узкие. Гены не сцеплены. На ферме много разных петухов и кур со всеми возможными генотипами, данные о которых занесены в компьютер. В будущем году ожидается повышенный спрос на шляпки с длинными черными узкими перьями. Какие скрещивания нужно провести, чтобы получить в потомстве максимальное количество птиц с модными перьями? Скрещивать пары с абсолютно одинаковыми генотипами и фенотипами не стоит.

Решение:

F 1: А *В *cc

1. Р: ♀ ААВВсс × ♂ ааbbсс
2. Р: ♀ ААВВсс × ♂ ААbbсс
3. Р: ♀ ААbbсс × ♂ aaВВсс и т.д.

Задача № 46. «Контрабандист».

В маленьком государстве Лисляндия вот уже несколько столетий разводят лис. Мех идет на экспорт, а деньги от его продажи составляют основу экономики страны. Особенно ценятся серебристые лисы. Они считаются национальным достоянием, и перевозить их через границу строжайше запрещено. Хитроумный контрабандист, хорошо учившийся в школе, хочет обмануть таможню. Он знает азы генетики и предполагает, что серебристая окраска лис определяется двумя рецессивными аллелями гена окраски шерсти. Лисы с хотя бы одним доминантным аллелем – рыжие. Что нужно сделать, чтобы получить серебристых лис на родине контрабандиста, не нарушив законов Лисляндии?

Решение :

Провести анализирующее скрещивание и выяснить, какие рыжие лисы гетерозиготны по аллелям окраски, перевезти их через границу;
на родине контрабандиста скрестить их друг с другом, и 1/4 потомков будет серебристой окраски.

Задача № 47. «Расстроится ли свадьба принца Уно?»

Единственный наследный принц Уно собирается вступить в брак с прекрасной принцессой Беатрис. Родители Уно узнали, что в роду Беатрис были случаи гемофилии. Братьев и сестер у Беатрис нет. У тети Беатрис растут два сына – здоровые крепыши. Дядя Беатрис целыми днями пропадает на охоте и чувствует себя прекрасно. Второй же дядя умер еще мальчиком от потери крови, причиной которой стала глубокая царапина. Дяди, тетя и мама Беатрис – дети одних родителей. С какой вероятностью болезнь может передаться через Беатрис королевскому роду ее жениха?

Решение :

Построив предполагаемое генеалогическое древо, можно доказать, что ген гемофилии был в одной из X-хромосом бабушки Беатрис; мать Беатрис могла получить его с вероятностью 0,5; сама Беатрис – с вероятностью 0,25.

Задача № 48. «Царские династии».

Предположим, что у императора Александра I в Y-хромосоме была редкая мутация. Могла ли эта мутация быть у:

а) Ивана Грозного;
б) Петра I;
в) Екатерины II;
г) Николая II?

Решение:

Сразу же вычеркнем Екатерину II, ввиду ее принадлежности к женскому полу.

Ивана Грозного вычеркнем тоже – он представитель рода Рюриковичей и к династии Романовых не принадлежал.

Ответ : мутация могла быть у Николая II.

Задача № 49. «Листая роман «Война и мир».

Предположим, что в Х-хромосоме у князя Николая Андреевича Болконского была редкая мутация. Такая же мутация была и у Пьера Безухова. С какой вероятностью эта мутация могла быть у:

а) Наташи Ростовой;
б) сына Наташи Ростовой;
в) сына Николая Ростова;
г) автора «Войны и мира»?

Ответ :

Андрей Болконский не получил от отца Х-хромосому. Его жена не была родственницей ни Болконских, ни Безуховых. Следовательно, у сына князя Андрея мутации нет.
Наташа Ростова вышла замуж за Пьера Безухова. Пьер передал X-хромосому своим дочерям, но не сыновьям. Следовательно, дочери Наташи Ростовой получили мутацию, а сыновья – нет.
Сын Николая Ростова получил свою Х-хромосому от матери – дочери старого князя Болконского (из 2 хромосом княжны Марьи мутация была только в одной, следовательно, она передала Х-хромосому своему сыну с вероятностью 50%).
Лев Николаевич: действие романа заканчивается за несколько лет до рождения Толстого, на страницах романа сам автор не появляется. Но отцом писателя был отставной офицер граф Николай Ильич Толстой, а мать – урожденная Волконская, т.е. родители писателя были прототипами Николая Ростова и его жены, урожденной Марии Болконской. Их будущий сын Лев получит мутацию с вероятностью 50%.

Задача № 50. «Спор Бендера и Паниковского».

Возник у Бендера с Паниковским спор: как наследуется окраска у волнистых попугайчиков? Бендер считает, что цвет попугайчиков определяется одним геном, имеющим 3 аллеля: С о – рецессивен по отношению к двум другим, С г и С ж кодоминантны, поэтому у попугайчиков с генотипом С о С о – белый цвет, С г С г и С г С о – голубой, С ж С ж и С ж С о – желтый и С г С ж – зеленый цвет. А Паниковский считает, что окраска формируется под действием двух взаимодействующих генов А и В . Поэтому попугайчики с генотипом А*В* – зеленые, А*bb – голубые, ааВ* –- желтые, ааbb – белые.

Они составили 3 родословные:

1. P: З × Б
2. P: З × З
3. P: З × Б

F1: З, Б
F1: Б
F1: Г, Ж, Г, Г, Ж, Ж, Ж, Г, Ж

Какие родословные могли быть составлены Бендером, какие – Паниковским?

Ответ : родословные 1 и 2 могли быть составлены Паниковским, а родословная 3 – Бендером.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1. Багоцкий С.В. «Крутые» задачи по генетике // Биология для школьников. 2005. № 4.
2. Гуляев Г.В. Задачник по генетике. – М.: Колос, 1980.
3. Жданов Н.В. Решение задач при изучении темы: «Генетика популяций». – Киров: изд-во Пед. института, 1995.
4. Задачи по генетике для поступающих в вузы. – Волгоград: Учитель, 1995.
5. Кочергин Б.Н., Кочергина Н.А. Задачи по молекулярной биологии и генетике. – Минск: Народна асвета, 1982.
6. Краткий сборник генетических задач. – Ижевск, 1993.
7. Методическая разработка для учащихся биологического отделения ВЗМШ при МГУ «Законы Менделя». – М., 1981.
8. Методические указания для самостоятельной подготовки к практическим занятиям по общей генетике. – Пермь: изд-во Мед. института, 1986.
9. Муртазин Г.М. Задачи и упражнения по общей биологии. – М.: Просвещение, 1981.
10. Орлова Н.Н. Малый практикум по общей генетике (сборник задач). – М.: изд-во МГУ, 1985.
11. Сборник задач по биологии (учебно-методическое посо-бие). – Киров, 1998.
12. Соколовская Б.Х. Сто задач по молекулярной биологии и генетике. – Новосибирск: Наука, 1971.
13. Фридман М.В. Задачи по генетике на школьной олимпиаде МГУ // Биология для школьников. 2003. № 2.
14. Щеглов Н.И. Сборник задач и упражнений по генетике. – М.: Экоинвест, 1991.