H2o химия. Молекула воды

ОПРЕДЕЛЕНИЕ

Вода (оксид водорода) – бинарное неорганическое соединение.

Химическая формула: Н 2 O

Структурная формула:

Молярная масса: 18,01528 г/моль.

Альтернативные названия : оксид , гидроксид водорода, гидроксильная кислота, монооксид дигидрогена, оксидан, дигидромонооксид.

В молекуле воды атом кислорода находится в состоянии sp 3 –гибридизации, поскольку в образовании гибридных орбиталей участвуют не только валентные электроны, но и неподеленные электронные пары. Гибридные орбитали направлены к вершинам тетраэдра:

Вследствие большой разницы электроотрицательностей кислорода и водорода связи в молекуле сильно поляризованы, и происходит смещение электрон ной в сторону . Молекула воды обладает большим дипольным моментом, поскольку полярные связи расположены несимметрично.

С сильной поляризацией связи О – Н связано образование водородных связей между молекулами воды. Каждая молекула воды может образовывать до четырёх водородных связей – две из них образует атом кислорода, а еще две – атомы водорода:

Образование водородных связей определяет более высокую температуру кипения, вязкость и поверхностное натяжение воды по сравнению с гидридами аналогов ( селена и теллура).

Изотопные модификации воды

В зависимости от типа изотопов водорода, входящих в состав молекулы, выделяют следующие изотопные модификации воды :

С учетом того, что у кислорода три стабильных изотопа (16 O, 17 O и 18 O), можно составить 18 формул молекул воды, различающихся изотопным составом. Как правило, природная вода содержит все эти разновидности молекул.

Примеры решения задач по теме «формула воды»

ПРИМЕР 1

Задание В радиатор автомобиля залили 9 л воды и добавили 2 л метилового с плотностью 0,8 г/мл. При какой минимальной температуре можно теперь оставить автомобиль на открытом воздухе, не опасаясь, что вода в радиаторе замерзнет (криоскопическая константа воды равна 1,86 К кг/моль)?
Решение По закону Рауля понижение температуры кристаллизации разбавленных растворов неэлектролитов равно:

где: – понижение температуры замерзания раствора; К cr – криоскопическая постоянная растворителя; C m – моляльная концентрация раствора; m B – масса растворенного вещества; m A – масса растворителя; M B – молярная масса растворенного вещества.

Масса метилового спирта равна:

Масса воды равна:

Молярная масса метилового спирта равна 32г/моль

Рассчитаем изменение температуры замерзания:

Ответ Автомобиль можно оставлять на улице при температуре выше –10,3°С

ПРИМЕР 2

Задание Сколько граммов Na 2 SO 4 10H 2 O следует растворить в 250 г воды для получения раствора, содержащего 5% безводной ?
Решение Молярная масса Na 2 SO 4 равна:

Молярная масса кристаллогидрата:

Обозначим количество (моль) растворенной соли как х.

Тогда раствора будет равна:

Масса безводной соли в готовом растворе будет равна:

Другие названия: оксид водорода, дигидрогена монооксид.

Вода - неорганическое соединение с химической формулой H 2 O.

Физические свойства

Химические свойства и методы получения

Вода наивысшей чистоты

Применяемая в лабораториях дистиллированная вода обыкновенно содержит еще заметные количества растворенного диоксида углерода , а также следы аммиака , органических оснований и других органических веществ. Получение очень чистой воды осуществляют в несколько этапов. Сначала в воду на каждый 1 л добавляют 3 г NaOH (ч. д. а.) и 0,5 г KMnO 4 и производят перегонку в аппаратуре на шлифах, изготовленной из стекла типа дюран 50 или солидекс, причем собирают только среднюю фракцию. Таким путем удаляется растворенный диоксид углерода и происходит окисление органических веществ. Удаление аммиака достигается при проведении второй и третьей перегонки с добавлением 3 г KHSO 4 или 5 мл 20%-ной H 3 PO 4 , причем эти реагенты предварительно нагревают с небольшим количеством KMnO 4 . Чтобы предотвратить «выползание» добавленного электролита в конденсат, при проведении третьей перегонки создают «сухой участок», для чего отрезок трубки между насадкой на колбу и холодильником нагревают до 150 °C. Последнюю перегонку, служащую для освобождения от следов электролитов, проводят из кварцевой колбы с холодильником из кварца. Верхнюю трубку холодильника, согнутую под прямым углом, вставляют без всякого уплотняющего материала непосредственно в сужение колбы (рис. 1). Во избежание попадания брызг воды целесообразно на пути пара поместить брызгоулавливатель. В качестве приемника служат колбы из кварца, платины, стекла типа дюран 50 или солидекс, которые предварительно обрабатывают водяным паром. Полученная таким способом вода является «чистой по значению рН» (т.е. со значением pH, равным 7,00).

Рис. 1. Способы присоединения колбы к холодильнику при перегонке воды особой чистоты.

а - простое (дешевое) исполнение;
б - с брызгоулавливателем. Чистоту воды определяют путем измерения ее электропроводности, которая непосредственно после перегонки воды должна составлять менее 10 -6 Ом -1 ·см -1 . Испытание на содержание в воде диоксида углерода производят при помощи баритовой воды, а пробу на содержание аммиака - реактивом Несслера . Очень чистую воду хранят в кварцевых или платиновых сосудах. Можно использовать для этого также и колбы из стекла дюран 50 или солидекс, предварительно обработанные паром в течение долгого времени и предназначенные исключительно для этой цели. Такие сосуды лучше всего закрывать пришлифованными колпачками.

Вода, предназначенная для измерения электропроводности

Способ 1. Получение путем перегонки. Необходимую для проведения измерений электропроводности воду наивысшей степени чистоты получают путем особенно тщательной перегонки уже предварительно очень хорошо очищенной воды. Последняя должна при 25°С обладать электропроводностью (χ ), равной 1·10 -6 -2·10 -6 Ом -1 ·см -1 . Ее получают указанным выше методом или же путем двукратной перегонки: а) со смесью перманганата калия и серной кислоты и б) с гидроксидом бария . Для перегонки пользуются колбой из стекла типа дюран 50 или солидекс с присоединенным к ней медным или кварцевым холодильником.

Рис. 2. Конструкция прибора для перегонки воды, предназначенной для измерения электропроводности.

1 - нагревательная обмотка (60 Ом); 2 - колбонагреватель (130 Ом); 3 - переходник на шлифах .


Все части прибора для одноступенчатой перегонки по методу Кортюма (рис. 2) изготовлены из стекла типа дюран 50 или солидекс, за исключением короткого кварцевого холодильника, присоединенного к перегонному прибору на нормальном шлифе. Ведущую к холодильнику согнутую часть нагревают при помощи нагревательного элемента (60 Ом) до температура превышающей 100°С, во избежание увлечения жидкой воды в холодильник. Расположенный ниже обратный холодильник высотой 60 см снабжен спиралью Видмера. К запасной склянке холодильник присоединяется переходными шлифами. Чтобы дистиллат сохранил малую электропроводность в течение долгого времени, переходные шлифы и запасную склянку предварительно необходимо в течение нескольких суток обработать горячей разбавленной кислотой. Воду высокой чистоты (χ =(1-2)·10 -6 Ом -1 ·см -1) перегоняют, пропуская через прибор медленный поток сжатого воздуха из стального баллона со скоростью приблизительно 1 пузырек в секунду. Воздух предварительно очищают, пропуская его через семь промывных склянок, из которых одна наполнена концентрированной серной кислотой , три содержат 50%-ный раствор гидроксида калия и три - «воду для измерения электропроводности» (последние три промывалки должны быть снабжены пористыми стеклянными пластинками). Полученную воду отбирают из запасной склянки путем вытеснения ее очищенным, как указано выше, сжатым воздухом. Нагревание воды в колбе производят при помощи колбонагревателя мощностью 300 Вт. Колбу можно легко наполнить водой или опорожнить при помощи расположенной в середине ее вертикальной трубки. Заполнение колбы проще всего осуществить, прекратив пропускание воздуха и выключив колбонагреватель.

К трехходовому крану в конце холодильника присоединяют сосуд, в котором проводят измерение электропроводности перегнанной воды до тех пор, пока не будет достигнуто желаемое значение χ . После этого воду путем переключения крана направляют в запасной сборник.

Таким путем за 1 ч можно получить 100 мл воды, для которой при 25 °С χ=2·10 -7 Ом -1 ·см -1 . Если перегонку вести очень медленно, то электропроводность полученной воды может достигать значения χ=10 -8 Ом -1 ·см -1 .

Способ 2. Получение путем ионного обмена. В больших количествах «воду для измерения электропроводности» (х от 7·10 -8 до 1,5·10 -7 Ом -1 ·см -1 можно получить путем ионного обмена в аппаратуре, схематически показанной на рис. 3.


Рис. 3. Конструкция установки для: получения воды особой чистоты путем ионного обмена.

1 - ионообменная колонна;
2 - пористый стеклянный фильтр;
3 - ячейка для измерения электропроводности;
4 - сборник;
6 - трубка для поглощения диоксида углерода. Колонку из стекла пирекс (длиной 75 см и диаметром 7,5 см) с пористой стеклянной пластинкой на дне наполняют смесью (750 г), состоящей из одной части амберлита IR 120 (16-50 меш) и двух частей амберлита IRA 400 (20-50 меш). Смолу в колонне накрывают перфорированным полиэтиленовым кружком, плавающим в растворе и служащим для предотвращения взмучивания смолы потоком воды. Через колонну пропускают обычную дистиллированную воду. Как только электропроводность воды, измеряемая в ячейке 3, достигнет достаточно низкого значения, сначала промывают, а за тем наполняют ею сосуд 4. Попадание в воду диоксида углерода нз воздуха предотвращают при помощи двух вставленных в колонну и в приемник хлоркальциевых трубок 5, заполненных гранулированным «карбосорбом» с индикатором.

Предварительную обработку смолы и се регенерацию производят следующим образом. Катионообменник IR 120 несколько раз промывают дистиллированной водой, удаляя мелкие частицы декантацией. Затем на стеклянном пористом фильтре смолу дважды обрабатывают попеременно 1 н. NaOH и 2 н. HCl , промывая после каждой обработки дистиллированной водой до нейтральной реакции. Анионообменник IRA 400 сначала также промывают дистиллированной водой. После декантации смолу на стеклянном пористом фильтре обрабатывают 2 н. NaOH, не содержащим карбонатов (воду для приготовления раствора освобождают от диоксида углерода перегонкой). Обработку ведут до тех пор, пока концентрация ионов хлора в элюате не понизится до минимума. После этого смолу промывают дистиллированной водой до достижения нейтральной реакции в промывных водах.

Перед регенерацией смолы смесь разделяют. В стакан вносят смолу, суспендируют ее в этаноле и добавляют хлороформ, причем аннионообменник собирается в верхнем слое. Смесь разделяют на составные части и проводят раздельную регенерацию.

При пропускании через аппаратуру обычной дистиллированной воды можно без регенерации получить со скоростью 1 л/мин 7000 л «воды для измерения электропроводности» с х=5,52·10 -8 Ом -1 ·см -1 при 25 °С.

Список использованной литературы

  1. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.
  2. M. Баудлер , Г. Брауэр, Ф. Губер, В. Квасник, П.В. Шенк, М. Шмайсер, Р. Штойдель. Руководство по неорганическому синтезу: В 6-ти томах. Т.1. Пер. с. нем./Под ред. Г. Брауэра. - М.: Мир, 1985. - 320 с., ил. [с. 152-156]

Вода - одно из самых распространённых веществ в природе (гидросфера занимает 71 % поверхности Земли). Воде принадлежит важнейшая роль в геологии, истории планеты. Без воды невозможно существование живых организмов. Дело в том, что тело человека почти на 63% – 68% состоит из воды. Практически все биохимические реакции в каждой живой клетке - это реакции в водных растворах… В растворах же (преимущественно водных) протекает большинство технологических процессов на предприятиях химической промышленности, в производстве лекарственных препаратов и пищевых продуктов. И в металлургии вода чрезвычайно важна, причём не только для охлаждения. Не случайно гидрометаллургия - извлечение металлов из руд и концентратов с помощью растворов различных реагентов - стала важной отраслью промышленности.


Вода, у тебя нет ни цвета, ни вкуса, ни запаха,
тебя невозможно описать, тобой наслаждаются,
не ведая, что ты такое. Нельзя сказать,
что необходимо для жизни: ты сама жизнь.
Ты исполняешь нас с радостью,
которую не объяснишь нашими чувствами.
С тобой возвращаются к нам силы,
с которыми мы уже простились.
По твоей милости в нас вновь начинают
бурлить высохшие родники нашего сердца.
(А. де Сент-Экзюпери. Планета людей)

Мной написан реферат по теме "Вода — самое удивительное вещество в мире". Я выбрал эту тему потому что — это самая актуальная тема, так как вода это самое важное вещество на Земле без которого не может существовать ни один живой организм и не могут протекать ни какие биологические, химические реакции, и технологические процессы.

Вода — самое удивительное вещество на Земле

Вода — вещество привычное и необычное. Известный советский учёный академик И. В. Петрянов свою научно-популярную книгу о воде назвал "самое необыкновенное вещество в мире". А "Занимательная физиология", написанная доктором биологических наук Б. Ф. Сергеевым, начинается с главы о воде — "Вещество, которое создало нашу планету".
Учёные абсолютно правы: нет на Земле вещества, более важного для нас, чем обыкновенная вода, и в тоже время не существует другого такого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Почти 3/4 поверхности нашей планеты занято океанами и морями. Твёрдой водой — снегом и льдом — покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У неё очень большая теплоёмкость. Нагреваясь, она поглощает тепло; остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла и тем самым "выравнивает" климат. А от космического холода предохраняет Землю те молекулы воды, которые рассеяны в атмосфере — в облаках и в виде паров… без воды обойтись нельзя — это самое важное вещество на Земле.
Строение молекулы воды

Поведение воды "нелогично". Получается, что переходы воды из твёрдого состояния в жидкое и газообразное происходит при температурах, намного более высоких, чем следовало бы. Этим аномалиям найдено объяснение. Молекула воды H 2 O построена в виде треугольника: угол между двумя связками кислород — водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле H 2 O, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H 2 O в своеобразные полимеры пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H 2 O. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему, кстати, так велика теплоёмкость воды.

Какие связи имеет H 2 O?

В молекуле воды имеются две полярные ковалентные связи Н-О.

Они образованы за счёт перекрывания двух одноэлектронных р — облаков атома кислорода и одноэлектронных S — облаков двух атомов водорода.

В молекуле воды атом кислорода имеет четыре электронных пары. Две из них участвуют в образовании ковалентных связей, т.е. являются связывающими. Две другие электронные пары являются не связывающими.

В молекуле имеются четыре полюс зарядов: два — положительные и два — отрицательные. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода. Два отрицательных полюса приходятся на две не связывающие электронные пары кислорода.

Подобное представление о строении молекулы позволяет объяснить многие свойства воды, в частности структуру льда. В кристаллической решётке льда каждая из молекул окружена четырьмя другими. В плоскостном изображении это можно представить так:



На схеме видно, что связь между молекулами осуществляется посредством атома водорода:
Положительно заряженный атом водорода одной молекулы воды притягивается к отрицательно заряженному атому кислорода другой молекулы воды. Такая связь получила название водородной (её обозначают точками). По прочности водородная связь примерно в 15 — 20 раз слабее ковалентной связи. Поэтому водородная связь легко разрывается, что наблюдается, например, при испарении воды.

Структура жидкой воды напоминает структуру льда. В жидкой воде молекулы также связаны друг с другом посредством водородных связей, однако структура воды менее "жёсткая", чем у льда. Вследствие теплового движения молекул в воде одни водородные связи разрываются, другие образуются.

Физические свойства H 2 O

Вода, H 2 O, жидкость без запаха, вкуса, цвета (в толстых слоях голубоватая); плотность 1 г/см 3 (при 3,98 градусах), t пл =0 градусов, t кип =100 градусов.
Разная бывает вода: жидкая, твёрдая и газообразная.
Вода — это единственное вещество в природе, которое в земных условиях существует во всех трёх агрегатных состояниях:

жидком — вода
твёрдом — лёд
газообразном — пар

Советский учёный В. И. Вернадский писал: "Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могли бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества — минерала горной породы, живого тела, которое её бы не заключало. Всё земное вещество ею проникнуто и охвачено".

Химические свойства H 2 O

Из химических свойств воды особенно важны способность её молекул дисоциировать (распадаться) на ионы и способность воды растворять вещества разной химической природы. Роль воды, как главного и универсального растворителя определяется прежде всего полярностью её молекул (смещением центров положительных и отрицательных зарядов) и, как следствие, её чрезвычайно высокий диэлектрической проницаемостью. Разноименные электрические заряды, и в частности ионы, притягиваются друг к другу в воде в 80 раз слабее, чем притягивались бы в воздухе. Силы взаимного притяжения между молекулами или атомами погружённого в воду тела также слабее, чем на воздухе. Тепловому движению в этом случае легче разобщить молекулы. Оттого и происходит растворение, в том числе многих трудно растворимых веществ: капля камень точит…

Диссоциация (распадение) молекул воды на ионы:
H 2 O → H + +OH, или 2H 2 O → H 3 O (ион гидроксия) +ОН
в обычных условиях крайне незначительна; диссоциирует в среднем одна молекула из 500000000. При этом надо иметь в виду, что первое из приведённых уравнений сугубо условное: не может существовать в водной среде лишённый электронной оболочки протон Н. Он сразу соединяется с молекулой воды, образуя ион гидроксия H 3 O. Считают даже, что ассоцианты водных молекул в действительности распадаются на значительно более тяжёлые ионы, такие, например, как
8H 2 O → HgO 4 +H 7 O 4 , а реакция H 2 O → H + +OH - - лишь сильно упрощенная схема реального процесса.

Реакционная способность воды сравнительно невелика. Правда, некоторые активные металлы способны вытеснять из неё водород:
2Na+2H 2 O → 2NaOH+H 2 ,

а в атмосфере свободного фтора вода может гореть:
2F 2 +2H 2 O → 4HF+O 2 .

Из подобных же молекулярных ассоциатов соединений молекул состоят и кристаллы обычного льда. "Упаковка" атомов в таком кристалле не ионная, и лёд плохо проводит тепло. Плотность жидкой воды пи температуре близкой к нулю, больше чем у льда. При 0°C 1гр льда занимает объём 1,0905 см 3 , а 1гр жидкой воды — 1,0001 см 3 . И лёд плавает, оттого и не промерзают насквозь водоёмы, а лишь покрываются ледяным покровом. В этом проявляется ещё одна аномалия воды: после плавления она сначала сжимается, а уж потом, на рубеже 4 градусов, при дальнейшем процессе начинает расширятся. При высоких давлениях обычный лёд можно превратить в так называемый лёд — 1, лёд — 2, лёд — 3, и т. д. — более тяжёлые и плотные кристаллические формы этого вещества. Самый твёрдый, плотный и тугоплавкий пока лёд — 7 — полученный при давлении 3 кило Па. Он плавится при 190 градусах.

Круговорот воды в природе

Организм человека пронизан миллионами кровеносных сосудов. Крупные артерии и вены соединяют друг с другом основные органы тела, более мелкие оплетают их со всех сторон, тончайшие капилляры доходят практически до каждой отдельной клетки. Копаете ли вы яму, сидите ли на уроке или блаженно спите, по ним беспрерывно течёт кровь, связывая в единую систему человеческого организма мозг и желудок, почки и печень, глаза и мускулы. Для чего же нужна кровь?

Кровь доносит до каждой клетки вашего тела кислород из лёгких и питательные вещества из желудка. Кровь собирает отходы жизнедеятельности из всех, даже самых укромных уголков организма, освобождая его от углекислого газа и других ненужных, в том числе опасных веществ. Кровь разносит по всему телу особые вещества — гормоны, которые регулируют и согласовывают работу разных органов. Иными словами, кровь соединяет разные части тела в единую систему, в слаженный и работоспособный организм.

Так же кровеносная система есть и у нашей планеты. Кровь Земли — это вода, а кровеносные сосуды — реки, речушки, ручьи и озёра. И это не просто сравнение, художественная метафора. Вода на Земле играет ту же роль, что и кровь в организме человека, и как недавно заметили учёные, структура речной сети очень похожа на структуру кровеносной системы человека. "Возница природы" — так назвал воду великий Леонардо да Винчи именно она, переходя из почвы в растения, из растений в атмосферу, стекая по рекам с материков в океаны и возвращаясь обратно с воздушными потоками, соединяя друг с другом различные компоненты природы, превращая их в единую географическую систему. Вода не просто переходит из одного природного компонента в другой. Как и кровь, она переносит с собой огромное количество химических веществ, экспортируя их из почвы в растения, с суши в озёра и океаны, из атмосферы на землю. Все растения могут потреблять питательные вещества, содержащиеся в почве, только с водой, где они находятся в растворённом состоянии. Если бы не приток воды из почвы в растения, все травы, даже растущие на самых богатых почвах, погибли бы "от голода", уподобившись купцу, умершему от голода на сундуке с золотом. Вода снабжает питательными веществами и обитателей рек, озёр и морей. Ручьи, весело стекающие с полей и лугов во время весеннего таянья снега или после летних дождей, собирают по пути хранящиеся в почве химические вещества и доносят их до жителей водоёмов и моря, связывая тем самым наземные и водные участки нашей планеты. Самый богатый "стол" образуется в тех местах, где несущие питательные вещества реки впадают в озёра и моря. Поэтому такие участки побережий — эстуарии — отличаются буйством подводной жизни. А кто удаляет отходы, образующиеся в результате жизнедеятельности различных географических систем? Опять же вода, причём в должности акселератора она работает намного лучше кровеносной системы человека, которая лишь частично выполняет эту функцию. Особенно важна очистительная роль воды сейчас, когда человек отравляет окружающую среду отходами городов, промышленных и сельскохозяйственных предприятий. В организме взрослого человека содержится примерно 5-6 кг. крови, большая часть которой беспрерывно циркулирует между разными частями его тела. А сколько воды обслуживает жизнь нашего мира?

Все воды на земле не входящие в состав горных пород, объединяются понятием "гидросфера". Её вес столь велик, что обычно его измеряют не в килограммах или в тоннах, а в кубических километрах. Один кубический километр — это куб с размером каждого ребра в 1 км., постоянно занятого водой. Вес 1 км 3 воды равен 1 млрд. т. На всей земле содержится 1,5 млрд. км 3 воды, что по весу равно примерно 1500000000000000000 тонн! На каждого человека приходится по 1,4 км 3 воды, или по 250 млн. т. Пей, не хочу!
Но к сожалению, всё не так просто. Дело в том, что 94% этого объёма составляют воды мирового океана, не пригодные для большинства хозяйственных целей. Лишь 6% -это воды суши, из которых пресной всего 1/3, т.е. лишь 2% от всего объёма гидросферы. Основная масса этих пресных вод сосредоточена в ледниках. Значительно меньше их содержится под земной поверхностью (в неглубоко расположенных подземных, водных горизонтах, в подземных озёрах, в почвах, а так же в парах атмосферы. На долю рек, из которых в основном и берёт воду человек, приходится совсем мало — 1,2 тыс. км 3 . Совершенно ничтожен общий объём воды, единовременно содержащейся в живых организмах. Так что воды, которую может потреблять человек и другие живые организмы, на нашей планете не так уж и много. Но почему же она не кончается? Ведь люди и животные постоянно пьют воду, растения испаряют её в атмосферу, а реки уносят в океан.

Почему не кончается вода на Земле?

Кровеносная система человека представляет собой замкнутую цепь, по которой беспрерывно течёт кровь, перенося кислород и углекислый газ, питательные вещества и отходы жизнедеятельности. Этот поток никогда не кончается, потому что представляет собой круг или кольцо, а, как известно, "у кольца нет конца". По этому же принципу устроена и водяная сеть нашей планеты. Вода на Земле находится в постоянном круговороте, и убыль её в одном звене сразу же восполняется за счёт поступления из другого. Движущей силой круговорота воды является солнечная энергия и сила тяжести. За счёт круговорота воды все части гидросферы тесно объединены и связывают между собой другие компоненты природы. В самом общем виде круговорот воды на нашей планете выглядит следующим образом. Под действием солнечных лучей вода испаряется с поверхности океана и суши и поступает в атмосферу, причём испарение с поверхности суши осуществляется, как реками и водоёмами, так почвой, растениями. Часть воды сразу возвращается с дождями обратно в океан, а часть переносится ветрами на сушу, где выпадают в виде дождей и снега. Попадая в почву, вода частично впитывается в неё, пополняя запасы почвенной влаги и подземных вод, частично стекает по поверхности в реки и водоёмы почвенная влага частично переходит в растения, которые испаряют её в атмосферу, и частично стекает в реки, только с меньшей скоростью. Реки, питающиеся водой из поверхностных ручьёв и подземных вод, несут воду в Мировой океан, восполняя её убыль. Вода испаряется с его поверхности, снова оказывается в атмосфере, и круговорот замыкается. Такое же движение воды между всеми компонентами природы и всеми участками земной поверхности происходит постоянно и беспрерывно в течение многих миллионов лет.

Надо сказать, что круговорот воды не полностью замкнут. Часть её, попадая в верхние слои атмосферы, разлагается под действием солнечных лучей и уходит в космос. Но эти незначительные потери постоянно восполняются за счёт поступления воды из глубинных слоёв земли при вулканических извержениях. За счёт этого объём гидросферы постепенно увеличивается. по некоторым расчётам 4 млрд. лет назад объём её составлял 20 млн. км 3 , т.е. был в семь тысяч раз меньше современного. В будущем количество воды на Земле, по-видимому, так же будет возрастать, если учесть, что объём воды в мантии Земли оценивается в 20 млрд. км 3 — это в 15 раз больше современного объёма гидросферы. Сравнивая объём воды в отдельных частях гидросферы с притоком воды в них и соседних звеньев круговорота, можно определить активность водообмена, т.е. время, за которое может полностью обновиться объём воды в Мировом океане, в атмосфере или почве. Медленнее всего обновляются воды в полярных ледниках (один раз за 8 тыс. лет). А быстрее всего обновляется речная вода, которая во всех реках на Земле полностью меняется за 11 дней.

Водный голод планеты

"Земля — планета поразительной голубизны"! — восторженно докладывали возвращавшиеся из далёкого Космоса после высадки на Луну американские астронавты. Да и могла ли наша планета выглядеть по-другому, если более 2/3 её поверхности занимают моря и океаны, ледники и озёра, реки, пруды и водохранилища. Но тогда, что означает явление, название которого вынесено в заголовках? Какой же "голод" может быть, если на Земле такое изобилие водоёмов? Да, воды на Земле более чем достаточно. Но нельзя забывать и о том, что жизнь на планете Земля, как считают учёные, впервые появилась в воде, а лишь потом вышли на сушу. Свою зависимость от воды организмы сохранили в ходе эволюции в течение многих миллионов лет. Вода — главный "строительный материал", из которого состоит их тело. В этом легко убедиться, проанализировав цифры следующие таблицы:

Последнее число этой таблицы свидетельствует о том, что в человеке весом 70 кг. содержится 50 кг. воды! Но ещё больше её в человеческом зародыше: в трёхдневном — 97%, в трёхмесячном — 91%, в восьмимесячном — 81%.

Проблема "водного голода" состоит в необходимости недержания определённого количества воды в организме, так как идёт постоянная потеря влаги в ходе различных физиологических процессов. Для нормального существования в условиях умеренного климата человеку необходимо получать с питьём и пищей около 3,5 литров воды в сутки, в пустыне это норма возрастает, как минимум до 7,5 литров. Без пищи человек может существовать около сорока дней, а без воды гораздо меньше — 8 дней. По данным специальных медицинских экспериментов при потере влаги в размере 6-8 % от веса тела человек впадает в полуобморочное состояние, при потере 10% - начинаются галлюцинации, при 12% человек уже не может восстанавливаться без специальной медицинской помощи, а при потере 20% наступает неизбежная смерть. Многие животные хорошо приспосабливаются к недостатку влаги. Наиболее известный и яркий пример этого — "корабль пустыни", верблюд. Он может весьма долго жить в жаркой пустыни, не потребляя питьевой воды и теряя без ущерба для своей работоспособности до 30% первоначального веса. Так, в одном из специальных испытаний верблюд за 8 дней работал под палящим летним солнцем потеряв 100 кг. из 450 кг. своего начального веса. А когда его подвели к воде, он выпил 103 литра и восстановил свой вес. Установлено, что до 40 литров влаги верблюд может получить путём преобразования жира накопленного в его горбу. Совершенно не употребляют питьевую воду такие пустынные животные, как тушканчики и кенгуровые крысы, - им хватает влаги, которую они получают с пищей, и воды, образующейся в их организме при окислении собственного жира, так же как у верблюдов. Ещё больше воды потребляют для своего роста и развития растения. Качан капусты "выпивает" за сутки более одного литра воды, одно дерево в среднем — более 200 литров воды. Конечно, это довольно приблизительная цифра — разные породы деревьев в разных природных условиях расходуют весьма и весьма различное количество влаги. Так растущий в пустыне саксаул тратит минимальное количество влаги, а эвкалипт, в который в некоторых местах называют "дерево-насос", пропускает через себя огромное количество воды, и по этой причине его насаждения используют для осушения болот. Так превратили в процветающую территорию заболоченные малярийные земли Колхидской низменности.

Уже сейчас около 10% населения нашей планеты испытывают недостаток в чистой воде. А если учесть, что 800 млн. дворов в сельской местности, где живёт около 25% всего человечества, не имеет водопровода, то проблема "водного голода" приобретает поистине глобальный характер. Особенно остра она в развивающихся странах, где плохой водой пользуется примерно 90% населения. Недостаток чистой воды становится одним из важнейших факторов, ограничивающих прогрессивное развитие человечества.

Приобретаемые вопросы об охране водных ресурсов

Вода применяется во всех областях хозяйственной деятельности человека. Практически невозможно назвать какой-либо производственный процесс, в котором не использовалась бы вода. В связи с бурным развитием промышленности, ростом населения городов расход воды увеличивается. Первостепенное значение приобретают вопросы охраны водных ресурсов и источников от истощения, а так же от загрязнения сточными водами. Всем известно, какой ущерб наносят сточные воды обитателям водоёмов. Ещё страшней для человека и всего живого на Земле появление в речных водах ядохимикатов, смываемых с полей. Так наличие в воде 2,1 части пестицида (эндрина) на миллиард частей воды достаточно для гибели всех находящихся в ней рыб. Огромную угрозу для человечества представляют сбрасываемые в реки неочищенные стоки населенных пунктов. Эта проблема решается путём сознания таких технологических процессов, в которых отработанная вода не сбрасывается в водоёмы, а после очистки снова возвращается в технологический процесс.

В настоящее время уделяется огромное внимание охране окружающей среды и в частности естественных водоёмов. Учитывая значение этой проблемы, у нас в стране не принимают закон об охране и рациональном использовании природных ресурсов. Конституция гласит: "Граждане России обязаны беречь природу, охранять её богатства".

Виды воды

Бромная вода — насыщенный раствор Br 2 в воде (3,5% по массе Br 2). Бромовая вода — окислитель, бромирующий агент в аналитической химии.

Аммиачная вода — образуется при контакте сырого коксового газа с водой, который концентрируется вследствие охлаждения газа или специально впрыскивается в него для вымывания NH3. В обоих случаях получают так называемую слабую, или скрубберную, аммиачную воду. Дистилляцией этой аммиачной воды с водяным паром и последующей дефлегмацией и конденсацией получают концентрированную аммиачную воду (18 — 20% NH 3 по массе), которую используют в производстве соды, как жидкое удобрение и др.

1

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H 2 O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол отмеченный на рисунке и расстояние между атомами зависит от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так в парообразном состоянии угол равен 104° 40", расстояние O-H - 0,096 нм; во льду угол - 109° 30", расстояние O-H - 0,099 нм. Различие параметром молекулы в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Канендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха" с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H 2 + O 2 → 2H 2 O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить, в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями - данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Он сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные - 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу - найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду - вряд ли можно было отыскать сырье дешевле. Зная, что вода - это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1гран = 62,2мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные - 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро- вода и геннао-рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H 2 O и даже H 2 O 2 . Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO 2 , для вторых, как ныне, вода H 2 O, перекись водорода H 2 O 2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов убедительно показали, что вода как химическое соединение может быть выражена формулой H 2 O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линия, т.е. H-O-H. "Однако, - пишет Бернал, - водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

ОПРЕДЕЛЕНИЕ

Вода – оксид водорода – бинарное соединение неорганической природы.

Формула – H 2 O. Молярная масса – 18 г/моль. Может существовать в трех агрегатных состояниях – жидком (вода), твердом (лед) и газообразном (водяной пар).

Химические свойства воды

Вода – наиболее распространенный растворитель. В растворе воды существует равновесие, поэтому воду называют амфолитом:

H 2 O ↔ H + + OH — ↔ H 3 O + + OH — .

Под действием электрического тока вода разлагается на водород и кислород:

H 2 O = H 2 + O 2 .

При комнатной температуре вода растворяет активные металлы с образованием щелочей, при этом также происходит выделение водорода:

2H 2 O + 2Na = 2NaOH + H 2 .

Вода способна взаимодействовать с фтором и межгалоидными соединениями, причем во втором случае реакция протекает при пониженных температурах:

2H 2 O + 2F 2 = 4HF + O 2 .

3H 2 O +IF 5 = 5HF + HIO 3 .

Соли, образованные слабым основанием и слабой кислотой, подвергаются гидролизу при растворении в воде:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S.

Вода способна растворять некоторые вещества металлы и неметаллы при нагревании:

4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 ;

H 2 O + C ↔ CO + H 2 .

Вода, в присутствии серной кислоты, вступает в реакции взаимодействия (гидратации) с непредельными углеводородами – алкенами с образованием предельных одноатомных спиртов:

CH 2 = CH 2 + H 2 O → CH 3 -CH 2 -OH.

Физические свойства воды

Вода – прозрачная жидкость (н.у.). Дипольный момент – 1,84 Д (за счет сильного различия электроотрицательностей кислорода и водорода). Вода обладает самым высоким значением удельной теплоемкости среди всех веществ в жидком и твердом агрегатном состояних. Удельная теплота плавления воды – 333,25 кДж/кг (0 С), парообразования – 2250 кДж/кг. Вода способна растворять полярные вещества. Вода обладает высоким поверхностным натяжением и отрицательным электрическим потенциалом поверхности.

Получение воды

Воду получают по реакции нейтрализации, т.е. реакции взаимодействия между кислотами и щелочами:

H 2 SO 4 + 2KOH = K 2 SO 4 + H 2 O;

HNO 3 + NH 4 OH = NH 4 NO 3 + H 2 O;

2CH 3 COOH + Ba(OH) 2 = (CH 3 COO) 2 Ba + H 2 O.

Один из способов получения воды – восстановление металлов водородом из их оксидов:

CuO + H 2 = Cu + H 2 O.

Примеры решения задач

ПРИМЕР 1

Задание Сколько воды надо взять, чтобы из 20%-го раствора уксусной кислоты приготовить 5%-й раствор?
Решение Согласно определению массовой доли вещества 20%-й раствор уксусной кислоты представляет собой 80 мл растворителя (воды) 20 г кислоты, а 5%-й раствор уксусной кислоты представляет собой 95 мл растворителя (воды) 5 г кислоты.

Составим пропорцию:

x = 20 × 95 /5 = 380.

Т.е. в новом растворе (5%-м) содержится 380 мл растворителя. Известно, что первоначальный раствор содержал 80 мл растворителя. Следовательно, чтобы получить 5%-й раствор уксусной кислоты из 20%-го раствора нужно добавить:

380-80 = 300 мл воды.

Ответ Необходимо 300 мл воды.

ПРИМЕР 2

Задание При сгорании органического вещества массой 4,8 г образовалось 3,36л углекислого газа (н.у.) и 5,4 г воды. Плотность органического вещества по водороду равна 16. Определите формулу органического вещества.
Решение Молярные массы углекислого газа и воды, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 44 и 18 г/моль, соответственно. Рассчитаем количество вещества продуктов реакции:

n(СО 2) = V(СО 2) / V m ;

n(Н 2 О) = m(Н 2 О) / M(Н 2 О);

n(СО 2) = 3,36 / 22,4 = 0,15 моль;

n(Н 2 О) = 5,4 / 18 = 0,3 моль.

Учитывая, что в составе молекулы СО 2 один атом углерода, а в составе молекулы Н 2 О – 2 атома водорода, количество вещества и массы этих атомов будут равны:

n(С) = 0,15 моль;

n(Н) = 2×0,3 моль;

m(C) = n(С)× M(C) = 0,15 × 12 = 1,8 г;

m(Н) = n(Н)× M(Н) = 0,3 × 1 = 0,3 г.

Определим, есть ли в составе органического вещества кислород:

m(O) = m(C x H y O z) – m(C) – m(H) = 4,8 – 0,6 – 1,8 = 2,4 г.

Количество вещества атомов кислорода:

n(O) = 2,4 / 16 = 0,15 моль.

Тогда, n(C): n(Н): n(O) = 0,15: 0,6: 0,15. Разделим на наименьшее значение, получим n(C):n(Н): n(O) = 1: 4: 1. Следовательно, формула органического вещества CH 4 O. Молярная масса органического вещества рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 32 г/моль.

Молярная масса органического вещества, рассчитанная с использованием величины его плотности по водороду:

M(C x H y O z) = M(H 2) × D(H 2) = 2 × 16 = 32 г/моль.

Если формулы органического вещества выведенного по продуктам сгорания и с использованием плотности по водороду различаются, то отношение молярных масс будет больше 1. Проверим это:

M(C x H y O z) / M(CH 4 O) = 1.

Следовательно, формула органического вещества CH 4 O.

Ответ Формула органического вещества CH 4 O.