Гель-хроматография как метод определения молекулярной массы. Гель-проникающая хроматография полимеров Гель хроматография

Описание

Совместно с немецкой компанией Polymer Standards Service (PSS) — одним из ведущих производителей материалов и оборудования для гель-проникающей хроматографии (ГПХ, GPC) или, по-другому, эксклюзионной хроматографии (SEC) — мы предлагаем комплексные решения для определения средних значений молекулярной массы полимеров (природных, синтетических, биополимеров), молекулярно-массового распределения и характеристик полимерных макромолекул в растворе. В данном методе разделение аналита происходит не за счет адсорбционных взаимодействий с неподвижной фазой, а исключительно по величине гидродинамического радиуса макромолекул.

Для детектирования разделенных по молекулярной массе компонентов всегда используется как минимум один концентрационный детектор (традиционные для ВЭЖХ рефрактометрический и спектрофотометрический , детектор по испарительному светорассеянию), а также специальные детекторы для анализа полимеров: вискозиметрический , детектор по лазерному светорассеянию . В сочетании с концентрационным данные детекторы позволяют определять абсолютную молекулярную массу, конформацию макромолекул в растворе, радиус инерции, гидродинамический радиус, степень разветвленности, константы уравнения Марка-Куна-Хаувинка, вириальные коэффициенты. При наличии калибровочных зависимостей данная система позволяет получить исчерпывающую информацию о макромолекулярных объектах и их поведении в растворах всего за один анализ (~15 мин), в то время как оценка данных характеристик традиционными методами составляет несколько дней.

Для обработки результатов измерений необходимо использовать специальное программное обеспечение. Мы предлагаем гибкие модульные ВЭЖХ системы для гель-проникающей хроматографии (GPC), включающие модули Prominence (насосы , термостат колонок , автодозаторы , рефрактометрический детектор) и специфические модули от компании Polymer Standards Service (PSS) — авторитетного эксперта в области ВЭЖХ анализа полимеров. Для расчетов результатов анализа возможно использование как программного обеспечения Shimadzu GPC Option, интегрированного в стандартную программу LabSolution LC, так и использование программных продуктов PSS — WinGPC SW, поддерживающих специальные детекторы.

Для работы с агрессивными по отношению к традиционно используемых капиллярам и фитингам подвижными фазами (гексафторизопропанол, тетрагидрофуран) возможна комплектация ВЭЖХ систем специальным дегазатором, насосами и автодозатором, компоненты которых устойчивы к указанным растворителям.

Базовые системы для ГПХ

Базовая ВЭЖХ система для ГПХ

Базовая ВЭЖХ система для ГПХ может быть сконфигурирована на базе блоков модели LC-20 Prominence с одним из концентрационных детекторов (спектрофотометрический/диодная матрица SPD-20A/SPD-M20A для поглощающих УФ-излучение полимеров, универсальными рефрактометрическим RID-20A и детектором испарительного светорассеяния ELSD-LT II). Данная система, при наличии подходящих стандартов и калибровочных зависимостей, позволяет определять величину относительной молекулярной массы полимеров, а также оценивать гидродинамические размеры макромолекул в растворе.

Технические характеристики основных модулей
Насос LC-20AD
Тип насоса Двойной параллельный микроплунжерный механизм
Ёмкость камер плунжера 10 мкл
Диапазон скорости потока элюента 0,0001 - 10 мл/мин
Максимальное давление 40 МПа
Точность установки потока 1% или 0,5 мкл (в зависимости от того, что лучше)
Пульсация 0,1 МПа (для воды при 1,0 мл/мин и 7 МПа)
Режим работы постоянный поток, постоянное давление
Насосы можно укомплектовать дополнительным устройством для автоматической промывки плунжера. Насосы оборудованы датчиком течи. Материал плунжера насоса — стойкий к агрессивным средам (сапфир).
Рефрактометрический детектор RID-20A
Источник излучения Вольфрамовая лампа, время работы 20000 час
Диапазон показателя преломления (RIU) 1,00 - 1,75
Термостатирование оптического блока 30 - 60С° с двойным контролем температуры оптической системы
Рабочий диапазон скоростей потока Возможность работы в широком диапазоне использования (от аналитического режима до препаративной хроматографии) без замены измерительной ячейки: от 0,0001 до 20 мл/мин в аналитическом режиме; до 150 мл/мин в препаративном режиме
Шум 2,5×10 -9 RIU
Дрейф 1×7 -7 RIU/час
Диапазон линейности 0,01-500×10 -6 в аналитическом режиме
1,0-5000×10 -6 в препаративном режиме
Переключатель потоковых линий соленоидный вентиль
Макс. рабочее давление 2 МПа (20 кгс/см²)
Объем ячейки 9 мкл
Настройка нуля оптический баланс (оптический ноль);
авто-ноль, тонкая настройка нуля сдвигом базовой линии
Термостат колонок с принудительной конвекцией воздуха СТО-20А
Диапазон контролируемых температур от 10C° выше комнатной до 85C°
Точность контроля температуры 0,1C°
Внутренний объем термостата 220×365×95 мм (7,6 л)
Вместимость термостата 6 колонок; кроме колонок могут быть установлены 2 ручных инжектора, градиентный смеситель, два переключающих крана высокого давления (6-ти или 7-ми портовых), кондуктометрическая ячейка
Возможности линейное программирование температуры; отслеживание и сохранение в файл изменений параметров колонки, количества анализов, количества прошедшей подвижной фазы (при установке опционного устройства CMD)
Контроль рабочих параметров датчик утечки растворителя; система защиты от перегрева

Детектор светорассеяния

Детектор многоуглового светорассеяния SLD7100 MALLS (PSS)

Детектор многоуглового светорассеяния SLD7100 MALLS (PSS) позволяет производить измерения статического светорассеяния одновременно под семью углами (35, 50, 75, 90, 105, 130, 145°) и определять абсолютные величины молекулярных масс, истинные параметры молекулярно-массового распределения, оценивать размеры и конформацию макромолекул в растворе . Данный детектор устраняет необходимость использования каких-либо стандартов, а также может служить в качестве емкостного инструмента (без ВЭЖХ системы) без каких-либо дополнительных модификаций.

Вискозиметрический детектор (PSS, Германия)

Вискозиметрический детектор DVD1260 (PSS)

Вискозиметрический детектор DVD1260 (PSS) при использовании в составе ВЭЖХ системы LC-20 Prominence позволяет определять средние молекулярные массы и параметры молекулярно-массового распределения , используя метод универсальной калибровки, незаменимый для макромолекул со сложной и глобулярной архитектурой, а также характеристическую вязкость, константы уравнения Марка-Куна-Хаувинка, степень разветвления, вириальные коэффициенты и конформацию макромолекул в растворе , исходя из определенных моделей, уже заложенных в программное обеспечение. Уникальная измерительная ячейка детектора представляет собой четырехплечевой асимметричный капиллярный мост, не содержащий, в отличие от всех имеющихся на рынке аналогов, ячеек запаздывания (hold-up columns) — в сравнительном контуре встроен специальный разбавительный резервуар, что позволяет сократить время анализа по крайней мере вдвое и избежать появления отрицательных системных пиков. Погрешность поддержания температуры в ячейке составляет менее 0,01 °C , что является первоочередным критичным фактором в вискозиметрическом анализе.

Технические характеристики:
Питание От 110 до 260 В; 50/60 Гц; 100 ВА
Диапазон разницы давлений (DP) -0,6 кПа — 10,0 кПа
Диапазон давления на входе (IP) 0-150 кПа
Объем измерительной ячейки 15 мкл
Разбавительный компенсационный объем (резервуар) 70 мл
Скорость сдвига (1,0 мл/мин) < 2700 с -1
Уровень шума 0,2 Па, сигнал разности давлений, 5 °С
Аналоговый выход 1,0 В / 10 кПа FSD разность давлений
1,0 В / 200 кПа FSD давление на входе
Общий объем детектора Около 72 мл (включая резервуар)
Макс. скорость потока 1,5 мл/мин
Точность задания температуры ±0,5 °C
Стабильность температуры Не хуже 0,01 °C
Цифровой интерфейс RS-232C, USB, Ethernet
Скорость передачи данных (бод) 1200 - 115200
Цифровые входы Промывка, Обнуление, Инжекция, Ошибка
Цифровые выходы Инжекция, Ошибка
Масса Около 4 кг
Размеры (Ш, В, Г) 160×175×640 мм

Аксессуары


Для работы в режиме ГПХ и построения калибровочных зависимостей мы предлагаем широкий выбор колонок для ГПХ, заполненных гелями (неподвижная фаза) и элюентами самой разной химической природы (полярных и неполярных), предназначенных для анализа как высокомолекулярных полимеров, так и олигомеров, а также стандартных полимерных объектов .

Колонки для гель-проникающей хроматографии (GPC, SEC):

  • для любых органических элюентов: PSS SDV, GRAM, PFG, POLEFIN (до 200 °C);
  • для водных элюентов: PSS SUPREMA, NOVEMA, MCX PROTEEMA;
  • колонки с монодисперсным распределением пор по размерам либо смешанного типа для получения абсолютно линейных калибровок;
  • для определения низких и высоких значений ММ;
  • готовые наборы колонок для расширения диапазона определяемых молекулярных масс;
  • для синтетических и биополимеров;
  • решения от микро ГПХ до препаративных систем;
  • колонки для быстрых разделений.

Колонки могут поставляться в любом выбранном вами элюенте.

Стандарты для гель-проникающей хроматографии (GPC, SEC):

  • индивидуальные стандартные образцы и готовые наборы стандартов;
  • растворимые в органических растворителях:
    • полистирол
    • поли(α-метилстирол)
    • полиметилметакрилат
    • поли(н-бутилметакрилат)
    • поли(трет-бутилметакрилат)
    • полибутадиен-1,4
    • полиизопрен-1,4
    • полиэтилен
    • поли(2-винилпиридин)
    • полидиметилсилоксан
    • полиэтилентерефталат
    • полиизобутилен
    • полилактид
  • растворимые в водных системах:
    • декстран
    • пуллулан
    • гидроксиэтилированный крахмал
    • полиэтиленгликоли и полиэтиленоксиды
    • Na-соль полиметакриловой кислоты
    • Na-соль полиакриловой кислоты
    • Na-соль поли(п-стиролсульфокислоты)
    • Поливиниловый спирт
    • протеины
  • MALDI стандарты, наборы для валидации детекторов по светорассеянию (LSD) и вискозиметрии;
  • дейтерированные полимеры;
  • полимеры и стандарты, изготавливаемые под заказ.

Эксклюзионная хроматография представляет собой вариант жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находящимся внутри пор сорбента, и растворителем, протекающим между его частицами, т.е. неподвижной фазой служит пористое тело или гель, а различное удерживание веществ обусловлено различия в размерах молекул веществ, их форме и способности проникать в поры неподвижной фазы. В названии метода отражен механизм процесса, от английского термина “Size Exclusion” , означающего исключение по размеру. Гель-проникающая хроматография (ГПХ) - эксклюзионная хроматография, в которой неподвижной фазой служит гель.

В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры.

Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне практически любых молекулярных масс - от 10 2 до 10 8 , что делает его незаменимым для исследования синтетических высокомолекулярных веществ и биополимеров.

Рассмотрим принципиальные основы метода. Объем эксклюзионной колонки можно выразить суммой трех слагаемых:

V с = V м + V i + V d ,

где V м - мертвый объем (объем растворителя между частицами сорбента, иначе говоря, объем подвижной фазы); V i - объем пор, занятый растворителем (объем неподвижной фазы); V d - объем матрицы сорбента без учета пор. Полный объем растворителя в колонке V t представляет собой сумму объемов подвижной и неподвижной фаз:

V t = V м + V i .

Удерживание молекул в эксклюзионной колонке определяется вероятностью их диффузии в поры и зависит главным образом от соотношения размеров молекул и пор. Коэффициент распределения К d , как и в других вариантах жидкостной хроматографии, представляет собой отношение концентраций вещества в неподвижной и подвижной фазах:

K d = C 1 /C 0

Так как подвижная и неподвижная фазы имеют одинаковый состав, то К d вещества, для которого обе фазы одинаково доступны, равен единице. Эта ситуация реализуется для молекул с самыми малыми размерами (в том числе и молекул растворителя), которые проникают во все поры, и поэтому движутся через колонку наиболее медленно. Их удерживаемый объем равен полному объему растворителя V t . Все молекулы, размер которых больше размера пор сорбента, не могут попасть в них (полная эксклюзия) и проходят по каналам между частицами. Они элюируются из колонки с одним и тем же удерживаемым объемом, равным объему подвижной фазы V м . Коэффициент распределения для этих молекул равен нулю.

Принцип разделения и детектирования пробы в эксклюзионной хроматографии.
А - ввод образца; В - разделение по размерам; С - выход крупных макромолекул;
D - выход мелких макромолекул.

Связь между удерживаемым объемом и молекулярной массой (или размером молекул) образца описывается частной калибровочной кривой, т.е. каждый конкретный сорбент характеризуется своей калибровочной кривой, по которой оценивают область разделяемых на нем молекулярных масс. Точка А соответствует пределу эксклюзии, или мертвому объему колонки V м . Все молекулы, масса которых больше, чем в точке А, будут элюироваться одним пиком с удерживаемым объемом V м . Точка В отражает предел проникания, и все молекулы, масса которых меньше, чем в точке В, также будут выходить из колонки одним пиком с удерживаемым объемом V t . Между точками А и В располагается диапазон селективного разделения. Соответствующий ему объем

V i = V t - V м

принято называют рабочим объемом колонки. Отрезок CD представляет собой линейный участок частной калибровочной кривой, построенной в координатах V R - lg M . Этот участок описывается уравнением

V R = C 1 - C 2 lg M ,

где C 1 - отрезок, отсекаемый на оси ординат продолжением отрезка CD, С 2 - тангенс угла наклона этого отрезка к оси ординат. Beличину С 2 называют разделительной емкостью колонки, ее выражают числом миллилитров растворителя, приходящегося на один порядок изменения молекулярной массы. Чем больше разделительная емкость тем селективнее разделение в данном диапазоне масс. В нелинейных областях калибровочной кривой (участки АС и BD) в связи с уменьшением С 2 эффективность фракционирования заметно снижается. Кроме того, нелинейная связь между lg M и V R существенно усложняет обработку данных и снижает точность результатов. Поэтому стремятся выбирать колонку (или набор колонок) так, чтобы разделение анализируемого полимера протекало в пределах линейного участка калибровочной кривой.

Если какое-либо вещество элюируется с удерживаемым объемом больше V t , то это указывает на проявление других механизмов разделения (чаще всего адсорбционного). Адсорбционные эффекты обычно проявляются на жестких сорбентах, но иногда наблюдаются и на полужестких гелях, видимо, из-за повышенного сродства к матрице геля. Примером может служить адсорбция ароматических соединений на стиролдивинилбензольных гелях.

По-видимому, изменением параметров взаимодействия в системе полимер - сорбент - растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот. В общем случае в эксклюзионной хроматографии стремятся полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярно-массового распределения (ММР) полимеров, могут существенно исказить результаты анализа. Одним из мешающих факторов является гидродинамический режим хроматографирования, в котором роль неподвижной фазы играют стенки колонки (канала) и разделение смеси макромолекул или частиц происходит вследствие различия скоростей протекания подвижпой фазы вдоль оси капала и у его стенок, а также за счет распределения разделяемых частиц по сечению канала в соответствии с их размером.

Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются априори известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему V t . Данный метод применяют преимущественно для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), но указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облегчает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ.

В эксклюзионной хроматографии полимеров предъявляются наиболее жесткие требования к стабильности потока подвижной фазы. Точность результатов в эксклюзионной хроматографии полимеров заметно зависит от температуры. При ее изменении на 10°С ошибка определения средних молекулярных масс превышает ±10%. Поэтому в данном варианте ВЭЖХ обязательно термостатирование разделительной системы. Как правило, достаточна точность поддержания температуры ±1°С в пределах до 80-100°С. В некоторых случаях, например, при анализе полиэтилена и полипропилена, рабочая температура составляет 135-150°С. Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр.

Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Матрица геля должна быть химически инертной, т.е. в ходе эксклюзионной хроматографии не должно происходить химическое связывание разделяемых макромолекул. При разделении белков, ферментов, нуклеиновых кислот при контакте с матрицей не должна происходить их денатурация. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить - хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента. Разделение веществ низкой и средней полярности в органических растворителях можно успешно осуществить как на полужестких, так и на жестких гелях. Исследование ММР гидрофобных полимеров, содержащих полярные группы, чаще проводят на колонках со стиролдивинилбензольными гелями, так как в этом случае практически не проявляются адсорбционные эффекты и не требуется добавка модификаторов к подвижной фазе, что значительно упрощает подготовку и регенерацию растворителя.

Для работы в водных системах используют главным образом жесткие сорбенты; иногда очень хорошие результаты удается получить на полужестких гелях специальных типов. Затем по калибровочным кривым или данным о диапазоне фракционирования, выбирают сорбент нужной пористости с учетом имеющихся сведений о молекулярной массе образца. Если анализируемая смесь содержит вещества, отличающиеся по молекулярной массе не более чем на 2-2.5 порядка, то обычно удается разделить их на колонках с одним размером пор. При более широком диапазоне масс следует использовать наборы из нескольких колонок с сорбентами различной пористости. Ориентировочно калибровочную зависимость в этом случае получают сложением кривых для отдельных сорбентов.

Растворители, применяемые в эксклюзионной хроматографии, должны удовлетворять следующим основным требованиям:

1) полностью растворять образец при температуре разделения;

2) смачивать поверхность сорбента и не ухудшать эффективность колонки;

3) предотвращать адсорбцию (и другие взаимодействия) разделяемых веществ с поверхностью сорбента;

4) обеспечивать максимально высокую чувствительность детектирования;

5) иметь низкую вязкость и токсичность.

Кроме того, при анализе полимеров имеет существенное значение термодинамическое качество растворителя: весьма желательно, чтобы он был "хорошим" по отношению к разделяемому полимеру и матрице геля, т.е. были максимально выражены концентрационные эффекты.


Хроматограмма олигомеров полиэтиленгликоля, полученная на составной колонке 2(600х7.5) мм с TSK-гелем G2000PW, ПФ 0.05 М раствор NaCl, расход 1 мл/мин, давление 2 МПа, температура 40°С, рефрактометрический детектор.

Растворимость образца обычно является главным лимитирующим фактором, ограничивающим ассортимент пригодных подвижных фаз. Наилучшим органическим растворителем для эксклюзионной хроматографии синтетических полимеров по комплексу свойств является ТГФ. Он обладает уникальной растворяющей способностью, низкой вязкостью и токсичностью, лучше многих других растворителей совместим со стиролдивинилбензольными гелями и, как правило, обеспечивает высокую чувствительность детектирования при использовании рефрактометра или УФ-детектора в области до 220 нм. Для анализа высокополярных и нерастворимых в тетрагидрофуране полимеров (полиамиды, полиакрилонитрил, полиэтилентерефталат, полиуретаны и др.) обычно используют диметилформамид или μ-крезол, а разделение полимеров низкой полярности, например различных каучуков и полисилоксанов, часто проводят в толуоле или хлороформе. Последний является также одним из лучших растворителей при работе с ИК-детектором. о -Дихлорбензол и 1,2,4-трихлорбензол применяют для высокотемпературной хроматографии полиолефинов (обычно при 135 °С), которые в других условиях не растворяются. Эти растворители имеют очень высокий показатель преломления, поэтому иногда их целесообразно использовать вместо тетрагидрофурана для анализа полимеров с низким коэффициентом преломления, что позволяет повысить чувствительность при детектировании рефрактометром.

Для предотвращения окисления растворителей и полужестких гелей в условиях высокотемпературной эксклюзионной хроматографии к о -дихлорбензолу и 1,2,4-трихлорбензолу добавляют антиокислители (ионол, сантонокс R и др.).

Жесткие сорбенты совместимы с любыми подвижными фазами, имеющими рН<8-8.5. При более высоких значениях рН силикагель начинает растворяться и колонка необратимо теряет эффективность. Стиролдивинилбензольные гели совместимы в основном с элюентами умеренной полярности. Для работы на колонках с μ-стирогелем (от 1000Å и выше) пригодны тетрагидрофуран, ароматические и хлорированные углеводороды, гексан, циклогексан, диоксан, трифторэтанол, гексафторпропанол и диметилформамид.

Степень набухания частиц геля в различных растворителях неодинакова, поэтому замена элюента в колонках с данными сорбентами может привести к снижению эффективности за счет изменения объема геля и образования пустот. При использовании неподходящих растворителей (ацетон, спирты) происходит столь сильная усадка геля, что колонка оказывается безнадежно испорченной. У сорбентов с малым размером пор (типа μ-стирогеля 100Е и 500Е) такая усадка наблюдается как в полярных, так и в неполярных растворителях, поэтому с ними, кроме того, нельзя работать в насыщенных углеводородах, фторированных спиртах и диметилформамиде. Удобным, хотя и весьма дорогим выходом из положения является использование отдельных наборов колонок для каждого применяемого растворителя. Некоторые фирмы с этой целью выпускают колонки с одним и тем же размером пор, заполненные разными растворителями - тетрагидрофураном, толуолом, хлороформом и ДМФА.

При разделении макромолекул основной вклад в размывание полосы определяется затрудненной массопередачей. К сожалению, многие из применяемых элюентов имеют высокую вязкость. Для снижения вязкости (а также для улучшения растворимости) эксклюзионную хроматографию часто проводят при повышенных температурах, что существенно улучшает эффективность хроматографической системы.

Анализ большинства полимеров на жестких гелях часто осложняется их адсорбцией. Для подавления адсорбции обычно используют растворители, которые адсорбируются на насадке колонки сильнее, чем анализируемые вещества. Если по каким-либо причинам это невозможно, то подвижную фазу модифицируют добавкой 0.1-2% полярного модификатора, например тетрагидрофурана. Значительно более сильными модификаторами являются этиленгликоль и полигликоли с различной молекулярной массой (ПЭГ-200, ПЭГ-400, карбовакс 20 М). Иногда, например при анализе поликислот в диметилформамиде, требуется добавка достаточно сильных кислот. Следует отметить, что полностью устранить адсорбцию добавкой модификаторов удается не всегда. В таких случаях нужно использовать полужесткие гели. Некоторые полимеры хорошо растворяются только в высоко полярных растворителях (ацетон, диметилсульфоксид и т. п.), несовместимых со стиролдивинилбензольными гелями. При их разделении на жестких сорбентах выбор растворителя проводят в соответствии с общими принципами, изложенными выше.

Свои характерные особенности имеет эксклюзионная хроматография в водных средах. Из-за специфики многих разделяемых систем (белки, ферменты, полисахариды, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава ПФ для подавления различных нежелательных эффектов. В качестве сорбентов применяют декстрановые гели (сефадексы), полиакриламидные, оксиакрилметакрилатнык гели, гели агарозы и др. В процессе эксклюзионного хроматографирования поведение макромолекул определяется в первую очередь их гидродинамическими размерами, а характерной особенностью белков, ферментов и синтетических полиэлектролиты является зависимость размеров макромолекул от рН и ионной силы раствора. Чем меньше значение рН и ионной силы раствора, тем выгоднее становятся развернутые конформации макромолекул (так называемое полиэлектролитное набухание). В этом случае среднестатистические размеры растут, что приводит к уменьшению объемов удерживания в режиме эксклюзионной хроматографии. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением рН. В частности, поддержание рН<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6М; оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества.

Важнейшей областью применения эксклюзионной хроматографии является исследование высокомолекулярных соединений. Применительно к синтетическим полимерам этот метод за короткий срок занял главенствующее положение для определения их молекулярно-массовых характеристик и интенсивно используется для изучения других видов неоднородности. В химии биополимеров эксклюзионную хроматографию широко применяют для фракционирования макромолекул и определения их молекулярной массы.

Принципиальная черта эксклюзионной хроматографии высокомолекулярных синтетических полимеров заключается в невозможности разделения смеси на индивидуальные соединения. Эти вещества представляют собой смесь полимергомологов с различной степенью полимеризации и соответственно с разными молекулярными массами M i . Молекулярную массу таких смесей можно оценить некоторой средней величиной, которая зависит от способа усреднения. Содержание молекул каждой молекулярной массы M i определяют либо по их численной доле в общем числе полимерных молекул, либо по массовой доле в их общей массе. Обычно полимер характеризуют найденными этими способами средними величинами, которые называют соответственно среднечисленной M n и среднемассовой M w молекулярной массой. Значения M n дают, например, криоскопия, осмометрия, эбулиоскопия, а значениям M w - светорассеяние и ультрацентрифугирование.

Если обозначить число молекул с молекулярной массой M i через N i , то обшую массу полимера можно выразить через Σ M i N i , численную долю молекул с массой M i через N i / Σ N i , а массовую долю молекул с массой M i - через f i = M i N i / Σ M i N i . Чтобы определить часть общей массы полимера, соответствующую этим долям, их умножают на M i .

Просуммировав полученные значения для всех величин, получают средние молекулярные массы:

M n = Σ 1 /( f i /M i ) = (Σ M i N i )/(Σ N i )

M w = Σ M i f i = (Σ M i 2 N i )/(Σ M i N i )

Отношение M w > / M n характеризует полидисперсность полимера.

На практике молекулярную массу полимеров часто определяют методом вискозиметрии. Средневязкостную молекулярную массу находят по уравнению Марка - Куна - Хаувинка:

[η ] = K η / M η a

где [η ] - характеристическая вязкость; К η , а - константы для данной системы полимер - растворитель при данной температуре.

Величина M η описывается уравнением

M η = (Σ M i a f i ) 1/a

Как правило, величины средних молекулярных масс удовлетворяют неравенству

M w > M η > M n

Обычно полимерный образец характеризуют комплексом значений M w , M η , M n и M w /M η , но этого может быть недостаточно. Наиболее полную информацию о молекулярно-массовой неоднородности образца дают кривые ММР. Типичная хроматограмма, полученная в процессе эксклюзионного разделения, представляет собой достаточно плавную кривую с одним или несколькими максимумами. Из этой кривой с использованием калибровочной зависимости и соответствующих расчетов определяют значения средних молекулярных характеристик и ММР полимера в дифференциальной или интегральной форме.

Гель-проникающая хроматография является, вероятно, наиболее часто используемым методом , так как это самый простой метод разделения полисахаридов, имеющих большой диапазон молекулярных масс. Одновременно он позволяет определять молекулярные массы полисахаридов. Когда применимы мягкие условия определения, этот метод особенно полезен для нестабильных биологических материалов.
Прибор для хроматографического. Гель-проникающая хроматография (ГПХ) - это метод, в котором разделение полимерных молекул основано на различных объемах внутри пористых частиц геля, которые доступны молекулам растворенного вещества разного размера.
Гель-проникающая хроматография является разновидностью метода фракционирования на колонке, в которой разделение на фракции осуществляется по методу молекулярного сита, основанному на способности молекул проникать в поры адсорбента определенного размера. В качестве адсорбентов в данном методе используют материалы, не имеющие зарядов и ионогенных групп, обладающие точно заданным размером пор (см. гл. Наилучшим образом этим требованиям удовлетворяют специально приготовленные сополимеры стирола с дивинилбензолом, которые при набухании образуют гели.
Схема работы в режиме рецикла. Гель-проникающая хроматография используется в основном как метод определения молекулярновесового распределения полимерных веществ, в то время как гель-фильтрационная хроматография является главным образом методом препаративного разделения, но и в том и в другом случае пригодны обе методики. При определении молекулярновесового распределения необходимо установить связь между хроматограммой и молекулярным размером или, правильнее, молекулярным весом.
Гель-проникающая хроматография, с Эксклюзионная хроматограф.
Гель-проникающая хроматография - эксклюзионная хроматом рафия, в которой неподвижной фазой служит гель.
Гель-проникающая хроматография представляет собой разновидность метода фракционирования на колонке, в которой разделение осуществляется по принципу молекулярного сита. Этот принцип был известен уже в начале 50 - х годов, но лишь после того, как Порат и флодин вновь открыли и широко использовали этот метод, он получил признание и широкое применение в научных исследованиях. Начиная с этого момента и до 1964 г. было опубликовано более 300 работ, посвященных этому новому методу фракционирования.
Разделение аминокислот методом ионообменной хроматографии. Гель-проникающая хроматография позволяет также охарактеризовать и фенолформальдегидные смолы.
Схема работы в режиме рецикла (10 ]. Гель-проникающая хроматография используется в основном как метод определения молекулярновесового распределения полимерных веществ, в то время как гель-фильтрационная хроматография является главным образом методом препаративного разделения, но и в том и в другом случае пригодны обе методики. При определении молекулярновесового распределения необходимо установить связь между хроматограммой и молекулярным размером или, правильнее, молекулярным весом.
Гель-проникающая хроматография (ГПХ) представляет собой метод разделения молекул, основанный на различии их размеров. Этот метод известен под названием гель-хроматография, эксклюзионная и мо-лекулярно-ситовая хроматография. Последнее название наиболее полно отражает сущность метода, однако в литературе более широко используют термин гель-проникающая хроматография.

Гель-проникающая хроматография (ГПХ) - это метод, в котором разделение полимерных 5 молекул основано на различных объемах внутри пористых чзстиц геля, которые доступны молекулам растворенного веществз рззного рззмера.
Гель-проникающая хроматография (ГПХ) представляет собой метод, в котором для разделения полидисперсных полимеров в растворе используют сильно пористые неионные гранулы геля. Согласно развитым теориям и моделям фракционирования методом ГПХ, определяющим фактором разделения является не молекулярный вес, а гидродинамический объем молекулы.
Гель-проникающая хроматография основана на способности макромолекул различной длины, а следовательно, и различной молекулярной массы, проникать в пористый компонент на различную глубину. Колонку набивают пористым стеклом или сильно сшитым набухшим полимерным гелем, в верхнюю часть колонки вносят полимер, затем промывают колонку растворителем. Молекулы меньшего размера проникают в поры гораздо глубже и удерживаются в колонке в процессе элюции значительно дольше, чем макромолекулы большего размера.
Гель-проникающая хроматография позволяет не только фракционировать смеси олигомеров, но и определять их средние молекулярные массы и молекулярно-массовые распределения. При этом численные значения констант уравнения Марка - Куна мало отличаются от коэффициентов для гауссова клубка в тэта-растворителе.
Гель-проникающую хроматографию компонентов нуклеиновых кислот проводят на сшитых декстрановых гелях (сефадек-сах) (Sephadex, Pharmacia, Uppsala, Sweden) и полиакриламид-ных гелях (биогелях) (Bio-Gel, Bio-Rad Labs Richmond, Calif. Кроме того, гели обладают ионообменными и адсорбционными свойствами, проявляя повышенное сродство к ароматическим и гетероциклическим соединениям.
При гель-проникающей хроматографии также наблюдается адсорбция пуриновых оснований на матрице геля.
РТФ олигобутадиенов и сополимеров бутадиена с акриловой кислотой и акрилонитрилом по данным 3. Использование гель-проникающей хроматографии (ГПХ) в классическом варианте для оценки РТФ олигомеров пока ограничено. В основе разделения молекул близких молекулярных весов, но разной функциональности методом ГПХ лежит изменение среднеквадратичного расстояния между концами макромолекул г / 2 в растворе в зависимости от природы и молекулярного веса концевых групп. Особенно сильно на значение г §) / сказывается циклизация и разветвление молекул, которые приводят к его уменьшению-в 1 5 - 2 раза по сравнению с линейными молекулами того же молекулярного веса.
Механизм гель-проникающей хроматографии но существу одинаков в случае высокой и низкой плотности поперечных связей, хотя на практике и могут наблюдаться значительные различия. Частицы геля в колонке суспендированы в растворителе. Каналы между частицами геля имеют гораздо большие размеры по сравнению с размерами пор внутри гранул геля, поэтому растворитель протекает только в пространстве между гранулами геля. Молекулы растворенного вещества в зависимости от их размера проникают в поры геля на различную глубину и перемещаются практически без ограничений в растворителе, содержащемся в гранулах геля.
Механизм гель-проникающей хроматографии в том виде, в каком он здесь представлен, основывается на предположении о диффузионном равновесии. Иными словами, принимается, что время распределения молекул растворенного вещества между наружным по отношению к частицам геля пространством и доступным для этих молекул объемом пор достаточно мало. Интервал времени, за который зона, содержащая молекулы растворенного вещества, проходит частицы геля, обычно значительно больше полупериода достижения равновесия путем диффузии растворенных молекул внутрь гранул геля.
При гель-проникающей хроматографии вещество характеризуется величиной К а, как и в обычной хроматографии. Величина К не зависит от размеров колонки и поэтому может быть использована для сравнения данных ГПХ, полученных на разных колонках.
При гель-проникающей хроматографии раствор полимера вводят в жидкость (элюент), который движется через колонку, заполненную сорбентом. На выходе из колонки раствор разделяется на фракции (зоны) в соответствии с размером макромолекул. Время, прошедшее от момента ввода раствора в элюент до момента выхода из колонки данной зоны, называют временем удерживания, а объем элюента, прошедшего через колонку за это время, - удерживаемым объемом.
Вытеснительная хроматография полиуретана. Определение молекулярной массы. Методом гель-проникающей хроматографии определяли молекулярно-массовое распределение в пробах полиуретана, растворенных в тетрагидрофуране.

Принцип гель-проникающей хроматографии может быть использован при разделении веществ, которые значительно различаются размерами своих молекул. Размер пор используемого сорбента должен быть соизмерим с размерами молекул разделяемых веществ. От распределения пор зависит разделительная способность материала. Вещества, молекулы которых настоль -, ко велики, что не могут проникнуть в поры, проходят через колонну с той же скоростью, что и подвижная фаза. Чем меньше молекулы разделяемых веществ, тем в больший объем пор они могут проникнуть и тем больше будут отставать от фронта подвижной фазы. Гель-проникающую хроматографию применяют главным образом для анализа веществ макромолекулярного характера.
В гель-проникающей хроматографии 0 - характеризует молекулы и вещества, которые не могут проникнуть в поры геля в колонке; в адсорбционной хроматографии - вещества, которые хотя и проникают практически в весь объем пор, но не задерживаются вследствие взаимодействия с поверхностью сорбента. Коэффициент емкости характеризует процессы взай модействия разделяемого вещества с подвижной и стационарной фазами и является, следовательно, термодинамической величиной.
В гель-проникающей хроматографии в качестве наполнителя колонок применяют макропористые силикагели, пористые стекла и органические полимерные гели. Материалы одного и того же типа, различающиеся по своей пористости, предназначены для разделения веществ с молекулами разного размера.
В гель-проникающей хроматографии подвижная фаза в большинстве случаев представляет собой единственный растворитель. Выбор растворителя необходимо проводить с учетом растворимости в нем полимера и в то же время так, чтобы в используемой подвижной фазе взаимодействия разделяемых веществ со стационарной фазой были минимальными. Для разделения гидрофильных полимеров, растворимых в воде, чаще всего используют тетрагидрофуран.
Схематическое изображение набухшего геля. При гель-проникающей хроматографии сорбционная активность компонентов и связанный с ней межфазный массообмен определяются только диффузионной подвижностью макромолекул и соотношением их размеров с размерами пор.
Для гель-проникающей хроматографии используют гель-хроматографы, состоящие из набора хроматографических колонок, заполненных соответствующим сорбентом (макропористыми стеклами, стирогелями и пр.
В гель-проникающей хроматографии помимо закономерностей общехроматографического характера, имеются свои специфические особенности, связанные прежде всего с особенностями свойств растворов полимеров, являющихся объектом исследования, с разнообразием этих объектов, сорбентов и условий проведения анализа. Все это, естественно, усложняет построение общей теоретической схемы. Поэтому исследователи, работающие в области ГПХ, вынуждены были на первых этапах развития метода разрабатывать частные теоретические концепции, в рамках которых находили объяснение отдельные закономерности, наблюдавшиеся в эксперименте. Это позволяло более грамотно ставить эксперимент, оптимизировать его режим и интерпретировать результаты.
Проведена гель-проникающая хроматография этих полимеров и получены градуировочные кривые для определения их молекулярной массы.
Обработка данных гель-проникающей хроматографии требует определения трех характеристик системы: надежности полученных данных, калибровки системы и ее разрешающей способности. Эти три характеристики взаимосвязаны и должны в конечном счете устанавливаться прямыми измерениями. После того как это сделано, можно далее пользоваться косвенными данными о неизменности указанных характеристик системы.
В методе гель-проникающей хроматографии полимерный образец разделяется в соответствии с размерами его макромолекул. До тех пор пока речь идет о молекулах, различающихся только по молекулярным весам, эффективность разделения определяется исключительно молекулярным весом. Но даже столь простая ситуация может усложниться, если молекулы химически неоднородного полимерного образца будут содержать сольватирую-щиеся в разной степени группы. Тогда, несмотря на одинаковость молекулярных весов, некоторые цепи могут обладать большими величинами мольных объемов.
С помощью гель-проникающей хроматографии анализируют широкий круг материалов, и быстрому распространению метода способствуют такие его преимущества, как простота и высокая эффективность. Эффективность метода наиболее ярко проявляется при анализе природных веществ, молекулярная масса которых изменяется в широких пределах.
Зависимость высоты, эквивалентной теоретической тарелке, от диаметра зерен сорбента для сорбентов разного типа при различных способах упаковки. О - поверхностно-пористый сорбент. dK - 2 1 мм, ручная упаковка.. - поверхностно-пористый сорбент, dK 7 9 мм, машинная упаковка. ф-поверхностно-пористый сорбент, dK 7 9 мм, ручная упаковка. с - силикагель, уравновешенная суспензия. ф - микросферический силикагель. стабилизированная суспензия. П - кизельгур, тампонная упаковка. А - микросферический силикагель, стабилизированная суспензия.| ГПХ узкодисперсных полистирольных стандартов на колонке (250 X 0 20 мм с силикаге-лем (Фп 0 20 мм, dp 5 - 6 мкм. 1 - Mw 2 - 10. 2 - Mw 5 МО4. 3 - Д ш 4. Поскольку в гель-проникающей хроматографии k n мало, Ф этого хроматографического метода меньше, чем при адсорбционной хроматографии.
Гель-хроматография (или гель-проникающая хроматография) является одним из вариантов жидкостной хроматографии, в котором растворенное вещество распределяется между свободным растворителем, окружающим гранулы геля, и растворителем, находящимся внутри гранул геля. Так как гель представляет собой набухшую структурированную систему, имеющую различные по размерам поры, то разделение в данном виде хроматографии зависит от соотношения размеров молекул разделяемых веществ и размеров пор геля. Помимо размеров молекул, которые можно принять пропорциональными молекулярным массам, существенную роль для гель-хроматографии играет форма молекул. Особенно большое значение этот фактор имеет для растворов полимеров, в которых при одной и той же молекулярной массе молекулы могут принимать различную форму (сферическую или другую произвольную) в соответствии с их кон-формацией и вследствие этого по-разному вести себя в колонке. Дальнейшие рассуждения справедливы для молекул, имеющих сферическую форму.

ГПХ (для гель-проникающей хроматографии) , которые служат исключительно для аналитических целей и имеют общую длину 370 см. (Принцип действия этого хроматографа, в котором распределение по молекулярному весу синтетических полимеров определяется почти совершенно автоматически, описан на стр. Конечно, прибор подобного типа можно создать и для работы с водорастворимыми полимерами , что существенно облегчит задачу определения молекулярного веса.
Однако широкому распространению гель-проникающей хроматографии препятствует малый ассортимент пористых гелей и невозможность разделения асфальте-нов с учетом их химической природы. Согласно этому методу на ионообменных смолах (амберлит-27 и амберлит-15) было проведено разделение асфальтенов на четыре кислых (38 6 % от исходного), четыре основных (16 6 %) и нейтральную (41 3 %) фракции. Затем методом гель-проникающей хроматографии они делятся на фракции, имеющие одинаковые размеры молекул. Этим методом была выявлена значительная полярность асфальтенов, выделенных из ромашкинской нефти.
Модель трехточечного взаимодействия, предложенная Далглишем. В принципе в гель-проникающей хроматографии (ее еще называют эксклюзионной или ситовой), которая особенно важна в химии белков, разделение осуществляется главным образом вследствие различия в стерических размерах молекул: большие молекулы, поскольку они не способны диффундировать в мелкие поры матрицы, элюируются быстрее, чем малые молекулы.
Рассмотренный выше механизм гель-проникающей хроматографии, по-видимому, полностью подтверждается экспериментом. В большинстве случаев изменение скорости потока не влияет на элюирующий объем, что свидетельствует о весьма близком подходе системы к равновесным условиям. Следует также отметить, что нарисованная выше картина - весьма грубое приближение к действительности. На рис. 5 - 1 указаны молекулы растворенного вещества, которые, обладая весьма малыми размерами, могут диффундировать через все поры матрицы и даже в местах сужения пор. В то же время среди молекул растворенного вещества имеются такие молекулы, большие размеры которых позволяют им проникать лишь в поры определенных размеров, находящиеся только на внешней оболочке гранул геля. Однако должны существовать молекулы с промежуточными размерами, которые могут проходить через узкие места в порах, хотя с гораздо меньшей скоростью вследствие взаимодействия со стенками каналов. Крейг убедительно показал, что скорости прохождения молекул растворенных веществ в процессе диффузии через мембраны, по обе стороны которых концентрации этих молекул различны, не слишком различаются, если поры мембран значительно больше, чем размеры диффундирующих молекул. Однако скорости диффузии оказываются чувствительной мерой молекулярных размеров для тех молекул, размеры которых лишь немногим меньше диаметра пор. Очевидно, по своей природе процессы дифференциальной диффузии и гель-проникающей хроматографии близки друг к другу.
При фракционировании методом гель-проникающей хроматографии применяют или пытаются применить большое количество разнообразных гелей. Как правило, эти гели представляют собой полимеры с различной степенью сшивания и набухают обычно в тех растворителях, в которых они получены. В качестве примеров можно привести декстраны, используемые в водных растворах, и полистиролы, применяемые при работе в органических растворителях. В отличие от общепринятого взгляда набухание, как было показано, не играет существенной роли, но весьма важным показателем качества геля является проницаемость или степень пористости. Воган провел широкое изучение различных гелей и других пористых материалов и показал, что набухший силикагель (сантоцель А фирмы Monsanto) позволяет весьма эффективно осуществлять фракционирование полистирола в бензоле. Силикагель представляет собой гидрофильное вещество и поэтому, разумеется, не набухает в бензоле.
Не останавливаясь на теории гель-проникающей хроматографии , заметим, что проницаемость частиц зависит от пористости и от метода получения студня. К наиболее широко применяемым в настоящее время студням относятся: для водных растворов - сшитый эпихлоргидрином декстран (биологически синтезированный углевод) и сшитый полиакриламид, а для неводных растворов - сшитый дивинилбензолом полистирол.
В работе методом гель-проникающей хроматографии были исследованы акрилонитрильные и АБС-сополимеры и получены градуировочные кривые для разных растворителей. Ниже будут описаны методы, применявшиеся в работе для анализа АБС-сополимеров. В этой работе были разработаны методики определения нерастворимого полимера (геля), растворимого полимера и общего количества неполимерных добавок, а также методики определения связанного акрилонитрила, бутадиена и стирола как в исходном полимере, так и в выделенном нерастворимом полимере (геле) и в растворимой полимерной фракции. Все эти методики применимы и для анализа промежуточных образцов привитого АБС-сополимера, а также смесей этого сополимера с низкомолекулярным стирол-акрило-нитрильным полимером, которые используются в производстве АБС.
В работе методом гель-проникающей хроматографии изучали поликарбонаты, синтезированные различными способами. Авторы работы пришли к заключению, что этот метод является наилучшим для анализа концевых групп. Методом гель-проникающей хроматографии проведено также фракционирование поликарбоната. Поликарбонаты были фракционированы из метиленхлорида методом последовательного осаждения. Такая градуировка была далее подтверждена методом мембранной осмометрии и измерением светорассеяния. Экспериментальные величины вязкости показали, что соотношение Кураты - Стокмайера - Роя пригодно для интерпретации молекулярного растяжения поликарбоната в метиленхлориде.
При общем описании процесса гель-проникающей хроматографии следует исходить из модифицированных соответствующим образом теоретических концепций хроматографии и динамики сорбции с учетом специфики растворов полимеров. Хроматографическую систему удобно рассматривать как двухфазную, понимая под подвижной фазой совокупность каналов, образованных пустотами между частицами сорбента, а под неподвижной - норовое пространство сорбента.
При определении ММР методом гель-проникающей хроматографии р-р полимера пропускают через колонку с насадкой в виде набухшего в р-рителе сшитого полимера. Скорость движения макромолекул в колонке зависит от их мол.
Эксклюзионная хроматография подразделяется на гель-проникающую хроматографию (ГПХ) и гель-фильтрационную хроматографию.
Фракционирование щелочного экстракта из еловой холоцеллюлозы методом ионообменной хроматографии. Для фракционирования часто используют гель-проникающую хроматографию.

Хроматография - метод разделения смесей компонентов, основанный на различии в распределении компонентов между двумя несмешивающимися фазами - подвижной и неподвижной. Компоненты разделяемого образца движутся через систему в подвижной фазе. Гель-проникающий анализ основан на разной способности различных по величине макромолекул проникать в поры неподвижной фазы, в качестве которой чаще используют гели трехмерных полимеров или пористые стекла. При этом разделение происходит только по размерам и не зависит от природы макромолекул.

На рис. 2.23 схематически показана поверхность гранулы геля, покрытая каналами, углублениями различного диаметра и длины, которые называют пореши. Растворитель (подвижная фаза) заполняет все пространство между гранулами и все поры внутри геля.

Объем, недоступный для растворителя, - само вещество геля - называют мертвым объемом, объем пор V n - поровым объемом. Если мимо такой поверхности протекает раствор с молекулами, размеры которых соизмеримы с размерами пор или меньше их, то часть молекул будет проникать в поры. Когда зона растворенного вещества покидает данный участок насадки, концентрация молекул внутри нор становится выше, чем снаружи, и молекулы вновь диффундируют в поток подвижной фазы. Если же размеры молекул больше размеров пор, то они проходят мимо гранул геля, не задерживаясь. Следовательно, большие по размерам молекулы проходят через колонку с гелем быстрее, выходят из нее раньше, при меньшем объеме протекающего растворителя. Для молекул меньших размеров, попадающих в поры и задерживающихся в них некоторое время, необходимо большее количество растворителя, чтобы они были вымыты из колонки.

Таким образом, макромолекулы нолидисперсного полимера, внесенного в колонку с пористым наполнителем, будут выходить из колонки в разное время при разном объеме вымывания V M (объеме удерживания, объеме элюции).

Макромолекулы, полностью исключенные из геля, выходят из колонки при объеме растворителя Е 0 , равном объему пространства, окружающего гранулы геля (объему подвижной фазы, т.е. растворителя, находящегося в колонке). Для меньших молекул доступен объем, равный сумме объема подвижной фазы п части AV„

Рис. 2.23. (а), в норовом пространстве зерна геля (б) и на выходе из колонки (в) неподвижной фазы (объема пор). Тогда элюционный объем /-го компонента растворенного вещества равен

где K,j = AVL/V n - коэффициент объемного распределения пор по размерам; для больших, полностью исключенных из геля макромолекул K V j = 0, для молекул растворителя К Г] = 1.

Для гель-хроматографического анализа характерным является ограниченное изменение элюционного объема, определяемого неравенством Т 0 Чл к Vo + Т„. В случае образца с одинаковым размером молекул следует ожидать их одновременного выхода из колонки. Однако вследствие неидеальности процесса (запаздывания входа и выхода молекул из пор, различия в скоростях движения молекул в порах и между гранулами, у стенок колонки и в ее центре идр.) наблюдается размывание хроматографического пика даже монодисперсных образцов.

Объем подвижной фазы Т 0 экспериментально определяют при использовании веществ с заведомо большими размерами молекул, которые полностью исключаются из геля и вымываются из колонки при объеме растворителя, соответствующем Т 0 . Значение Т 0 можно также рассчитывать по формуле

где Т кол - полный объем колонки; g - общая масса геля и растворителя; р П| и ро - плотности набухшего геля и растворителя.

Величину V n - полный доступный внутренний объем, поро- вый объем - определяют по уравнению

где g rc - масса сухого геля; R - доля связанного в геле растворителя.

Значение R вычисляют по формуле

Поскольку при гель-хромато графическом анализе распределение макромолекул происходит по эффективному гидродинамическому объему, то для получения информации о величинах молекулярных масс и молекулярно-массовом распределении необходимо проводить предварительную калибровку колонки по образцам с известной молекулярной массой, т.е. получать зависимость «М - И эл ». Для анализа полидисперсных полимеров используют

Рис. 2.24. Калибровочные кривые «lgМ - К, л »

(пояснения см. в тексте)

несколько колонок с различным набором пор, соответствующих размерам разделяемых макромолекул.

Когда распределение по размерам пор в геле широкое, зависимость «М - К)Л » будет крутой (прямая 1 на рис. 2.24): колонка в этом случае обеспечивает худшее разделение, но в более широком интервале молекулярных масс. Когда поры близки по размеру, зависимость будет криволинейной в области малых У эл (не происходит разделения высокомолекулярных фракций), однако в этом случае обеспечивается лучшее разделение в более узком интервале молекулярных масс от М { до М 2 (кривая 3 на рис. 2.24). Зависимость 2 на том же рисунке соответствует гелю, поры которого обеспечивают удовлетворительное разделение образца.

Для получения калибровочных зависимостей обычно используют монодиснерсные фракции исследуемого полимера; полученные зависимости в простейших случаях описываются прямой

В более общем случае зависимость «М - У эл » выражается следующим образом:

где С, С 2 и С 3 - константы.

Полимеры различного строения на одной и той же колонке дают обычно различающиеся калибровочные зависимости «М - К,.,».

Аналогичный результат наблюдается и при переходе от одного растворителя к другому для одного и того же полимера. Однако было показано, что для различных полимеров и для различных растворителей можно получить единую зависимость между элю- ционным объемом и произведением М[х.

С использованием уравнения Марка - Куна - Хаувинка [ ц | = = КМ" между коэффициентами уравнений (2.138) и (2.140) можно установить следующие соотношения:

Выполнение универсальной зависимости «Е эл - М[г||» означает, что макромолекулы с одним и тем же значением Л/[ ц | = = Фо(/? 2) 1,5 вымываются при одном и том же значении V Ml . Это свидетельствует о том, что деление в колонке действительно происходит по величине эффективного гидродинамического объема.

Обычно колонку гель-хроматографа калибруют по доступным узким фракциям какого-либо полимера (чаще - полистирола). Если для исследуемого полимера известна зависимость |г|] = К Ц М 0 , то легко пересчитать зависимость «У эл - М[ср]» для данной системы «полимер - растворитель» в зависимость «М - Е эл »:

где ci и М] - соответствующие показатели для первого (стандартного) полимера, а К п. 2 , а 2 и М 2 - для второго.

Чаще определение концентрации полимера в растворе, вытекающем из колонки, производят рефрактометрически, поэтому важно различие показателей преломления раствора и растворителя. Если они окажутся одинаковыми, то полимер будет «невидим» в элюируемом растворе. Получаемые зависимости изменения разницы показателей преломления раствора и растворителя от Е эл представляют собой гель-хроматограмму полимера, которая позволяет рассчитать М„, М„, и молекулярно-массовое распределение.

Пример. На рис. 2.25 приведена гель-хроматограмма полиизопрена при элюировании хлороформом. Для определения молекулярной массы этого образца использована универсальная калибровочная зависимость для полистирола, имеющая вид lg(M[г| |) = 16,13 - 0,0706 К,.,.

Рис. 2.25.

Для перехода к уравнению, связывающему молекулярную массу с элюционным объемом для нолиизонрена, используют уравнение Марка - Куна - Хаувинка для системы «полиизопрсн - хлороформ»:

Тогда калибровочная зависимость для полиизопрена имеет вид

Гель-хроматограмму (см. рис. 2.25) для полиизопрсна разбивают на равные участки - счеты (один счет на рис. 2.25 соответствует АН эл = = 4 мл, а М, - числовое значение молекулярной массы в точке разбивки). Для каждой реперной точки определяют элюционный объем V, высоту F, от базовой линии и представляют полученные данные по форме табл. 2.13.

Данные для расчета молекулярной массы и ММР полиизопрена методом гель-проникающей хроматографии

Таблица 2.13

Fj, мм

Г F:) ,

17 - 10 "’ 1 М: J

Величины М„, и М„ вычисляют по формулам

Таким образом, отношение величин М„, М„, будет

Транскрипт

1 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н.НЕСМЕЯНОВА. НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР ПО ФИЗИКЕ И ХИМИИ ПОЛИМЕРОВ ГЕЛЬ-ПРОНИКАЮЩАЯ ХРОМАТОГРАФИЯ ПОЛИМЕРОВ Задача спецпрактикума Благодатских И.В. МОСКВА

2 Оглавление. ОСНОВЫ ХРОМАТОГРАФИИ ПОЛИМЕРОВ. Движущие силы и режимы хроматографии полимеров..характеристики хроматографического пика. Концепция теоретических тарелок..3 Основы метода эксклюзионной (гель-проникающей) хроматографии. ПРОВЕДЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ ПО АНАЛИЗУ ММР ПОЛИМЕРА МЕТОДОМ ГЕЛЬ- ПРОНИКАЮЩЕЙ ХРОМАТОГРАФИИ 3. ЛИТЕРАТУРА. ОСНОВЫ ХРОМАТОГРАФИИ ПОЛИМЕРОВ.. Движущие силы и режимы хроматографии полимеров. Хроматография - метод разделения веществ путем распределения между двумя фазами, одна из которых подвижна, а другая неподвижна. Роль подвижной фазы в жидкостной хроматографии играет жидкость (элюент), движущаяся в каналах между частицами вдоль колонки, заполненной пористым материалом (см. рис.). Рис.. Движение макромолекулы в хроматографической колонке: d k - размер каналов между частицами неподвижной фазы; d n - размер пор; R - размер макромолекулы; t s - время, проведенное макромолекулой в поре, t m - в подвижной фазе. Неподвижной фазой являются поры сорбента, заполненные жидкостью. Средняя скорость передвижения этой фазы вдоль оси колонки равна нулю. Анализируемое вещество перемещается вдоль оси колонки, двигаясь вместе с подвижной фазой и время от времени делая остановки при попадании в неподвижную фазу. Этот процесс иллюстрирует рис., где схематически изображено скачкообразное движение макромолекулы с размером R по каналам с размером d, соответствующим размеру частиц. Молекулы делают остановки в щелевидных порах, размер которых по порядку величины соответствует размеру макромолекул. Время между последовательными остановками может быть записано как:

3 t t s + t m + t k, () где t s - время пребывания молекулы в неподвижной фазе, t m d - время, проведенное молекулой в подвижной фазе (D - D коэффициент поперечной диффузии, t k - время перехода из подвижной фазы в неподвижную и обратно). Обычно в процессах высокоэффективной жидкостной хроматографии (Hgh Performance Lqud Chromatography в англоязычной литературе) в ее аналитическом варианте это время t k много меньше первых двух и его можно опустить в формуле (). Если число остановок при движении по колонке достаточно велико, то и общее время движения макромолекулы по колонке достаточно велико, по сравнению с характерным временем установления равновесия. В этом случае для определения вероятности нахождения макромолекулы в единице объема неподвижной фазы по отношению к подвижной фазе (или коэффициента распределения K d равного отношению концентраций в данных фазах) можно использовать методы равновесной термодинамики. А именно, коэффициент распределения будет определяться свободной энергией перехода макромолекулы из подвижной фазы в неподвижную: T S H G RT Kd exp exp () RT Для цепи, состояшей из N сегментов, K exp(N µ), (3) d где µ - изменение химического потенциала сегмента. Коэффициент распределения в хроматографии является фундаментальным понятием и определяется следующим образом: VR V K d (4) Vt V где V R - объем с которым выходит из колонки данное вещество, V - объем подвижной фазы, определяемый по выходу наиболее крупных макромолекул не попадающих в поры, V t - объем элюирования веществ, выходящих вместе с фронтом растворителя. Из (3) сразу можно видеть, что в зависимости от знака G, макромолекулы ведут себя различным образом при попадании в пору (см.рис.) : Рис.. если G>, то K d стремится к с ростом длины макромолекулы (при этом уменьшается и объем элюирования). Это соответствует эксклюзионному режиму хроматографии. При G< K d экспоненциально растет с ростом ММ и это соответствует адсорбционному режиму хроматографии. Таким образом, оба режима хроматографии могут рассматриваться в рамках единого механизма и, более того, плавно меняя энергию взаимодействия сегмента с поверхностью сорбента за счет состава растворителя или температуры, можно обратимо переходить от одного режима к другому. Экспериментально это было впервые показано в работе Тенникова и др. . Точка (для данной пары полимер - сорбент - это состав растворителя и температура), соответствующая равенству G, при которой происходит компенсация энтропийных потерь и энергетического выигрыша при каждом соударении сегмента макромолекулы со стенкой поры называется критической точкой адсорбции или критическими условиями хроматографии. Как видим, в этих условиях не происходит деления по ММ и это обстоятельство является предпосылкой для использования режима критической хроматографии для исследования разных типов молекулярной неоднородности полимеров, таких как число функциональных групп на концах цепи, состав блоксополимеров, топология 3

4 (наличие разветвленных или циклическтх макромолекул). Этот хроматографический метод является относительно новым и некоторые наиболее интересные результаты его применения можно найти, например, в работах [,3,4]. Режим хроматографии, соответствующий условию G< широко применяется для разделения низкомолекулярных соединений и называется, в зависимости от химической природы функциональных групп на поверхности сорбента, адсорбционной, нормальнофазной, обращеннофазной, ионпарной и т.д. хроматографией. Для полимеров его применение ограничено областью слабых взаимодействий вблизи критических условий и областью олигомерных макромолекул, т.к. с ростом длины цепи мы переходим к практически необратимой адсорбции макромолекулы на колонке. Наиболее важным для полимеров является режим эсклюзионной хроматографии или, как его еще называют, гельпроникающей хроматографии. Этот режим более подробно будет рассмотрен в следующем разделе, а сейчас мы перейдем к описанию некоторых важнейших хроматографических характеристик... Характеристики хроматографического пика. Концепция теоретических тарелок. После прохождения через хроматографическую колонку узкой зоны какого-либо монодисперсного вещества, на выходе мы получаем расширенную зону в виде пика приблизительно гауссова по форме (в случае хорошо упакованной колонки и правильно выбранной скорости хроматографии). Причины расширения пика лежат в различных диффузионных процессах, сопровождающих движение молекул вдоль колонки (см. например, соотношение ()). Наиболее важные характеристики пика - объем элюирования или V R или объем удерживания (относится к центру пика) и дисперсия пика, т.е. второй центральный момент (см.рис.3): σ h V V dv R. (5) Справедливы следующие соотношения между величинами, показанными на рис.3: σ, 43W W b. (6) 4 Рис. 3. Модель гауссова пика. Параметры уширения пика. Часто все эти величины выражаются в единицах времени, тогда говорят о времени удерживания и т.д., однако, в этом случае скорость потока элюента должна быть строго фиксирована. Существует простая феноменологическая теория описания относительного вклада расширения зоны в хроматографическое разделение. Это - теория тарелок. Хроматографическая колонка мысленно делится на ряд последовательных зон, в каждой из которых достигается полное равновесие между растворенным веществом в подвижной и неподвижной фазе. Физическую основу этого подхода составляет скачкообразное движение, описанное в начале первого раздела, и число теоретических тарелок в колонке связано с числом остановок при попадании в неподвижную фазу за время движения данного вещества по колонке. Чем больше это число, тем больше число теоретических тарелок и тем выше эффективность колонки. Число теоретических тарелок определяется следующим образом: 4

5 VR N σ V 5,54 W R V 6 W R b. (7) Поскольку эта величина меняется при изменении объема элюирования, правильно для характеристики эффективности колонки использовать неудерживаемое вещество, выходящее при K d..3. Основы метода эксклюзионной (гель-проникающей) хроматографии. Эксклюзионная хроматография (Sze Excluson Chromatography, SEC) или гель-проникающая хроматография (ГПХ, Gel Permeaton Chromatography, GPC) реализуется, когда поведение макромолекул в порах определяется энтропийной составляющей свободной энергии, а энергетическая составляющая мала по сравнению с ней. В этом случае, коэффициент распределения будет экспоненциально зависеть от соотношения размера макромолекулы и размера пор. Скейлинговая теория предсказывает сдедующие закономерности для случая пор соизмеримых с размером макромолекулы R K d Aexp D α, (8) где R an - характерный радиус идеальной цепи или 3 R an 5 для цепи с объемным взаимодействием, D - диаметр пор, α - показатель степени от 4/3 до в зависимости от принятой модели пор (щель, капилляр, полоса) и модели цепи (идеальная или неидеальная). Таким образом, поведение макромолекул в условиях эксклюзионной хроматографии определяется размером цепи. Размер макромолекулы определяется ее химическим строением, числом звеньев в цепи (или молекулярной массой), топологией (например, размер разветвленной макромолекулы или макроцикла уменьшается по сравнению с линейной макромолекулой того же химического строения). Кроме того, размер гибких макромолекул в определенной степени зависит от использованного растворителя благодаря эффекту исключенного объема. Тем не менее, метод ГПХ получил широкое распространение в лабораторной практике как метод разделения по молекулярным массам, определения средних молекулярных масс и молекулярно-массовых распределений (ММР). Развитие метода началось с середины 5-х годов, когда были созданы первые широкопористые органические сорбенты для высокоэффективной гель-проникающей хроматографии. Как можно видеть из соотношений (8), метод не является абсолютным для определения молекулярных масс, но требует соответствующей калибровки по стандартным (желательно, узкодисперсным) образцам с известной ММ, связывающей объем (или время) удерживания с ММ. Рисунок 4 иллюстрирует калибровочные кривые для полистирола в терминах lg V R на полужестких органических сорбентах фирмы Waters (crostyragel) с различным размером пор. Для анализа какого-либо полимера по молекулярным массам необходимо подобрать колонку с подходящим размером пор или серию колонок с разными порами или воспользоваться колонкой со смесью сорбентов с разными порами (колонка Lnear в приведенном примере). Разумеется, чтобы использовать метод ГПХ для анализа ММР необходимо обеспечить условия реализации эксклюзионного механизма разделения, не осложненного эффектами взаимодействия как срединных, так и концевых звеньев цепи. Речь идет об адсорбционном взаимодействии из неполярного растворителя или обращено-фазном взаимодействии неполярных фрагментов цепи при хроматографии гидрофильных полимеров в водной среде. Кроме того, водорастворимые полимеры, содержашщие ионизированные группы, способны к сильным электростатическим взаимодействиям и требуют особенно тщательного подбора условий хроматографии. Подбор условий включает в себя выбор подходящих по химическому строению для конкретного анализа сорбента и растворителя (элюента). 5

6 Рекомендации можно найти в руководствах фирмпроизводителей хроматографического оборудования, а также в справочниках и монографиях (см., напр. ), 6 V R, мл Рис. 4. Калибровочные кривые для колонок µstyragel. На рисунке указана фирменная маркировка колонок величиной, характеризующей размер пор сорбента, которая равна длине вытянутой цепи полистирола, исключенной по стерическим причинам из пор. Хроматографическая колонка является сердцем жидкостного хроматографа. В состав хроматографа входит, кроме того, ряд необходимых дополнительных устройств:)система подачи элюента (насос), обеспечивающая стабильный поток,) система ввода пробы без остановки потока (инжектор или автосамплер), 3)детектор - устройство, обеспечивающее формирование сигнала пропорционального концентрации вещества на выходе из колонки (детекторы бывают различного типа, наиболее популярны в гель-проникающей хроматографии рефрактометрические и спектрофотометрические детекторы), и 4) системы сбора и обработки данных на базе персонального компъютера. В современных хроматографах часто управление работой всех частей хроматографа также производится посредством управляющей программы, объединенной с системой обработки данных. Хроматограмма полимера, полученная в условиях эксклюзионной хроматографии F(V) является отражением функции его молекулярно-массового распределения W(). В силу закона сохранения вещества: F V dv W d (9) Для перехода от хроматограммы к функции ММР необходимо иметь калибровочную функцию V f(), тогда искомая функция будет W F(f) df () d Эти соотношения записаны без учета приборного уширения (ПУ). Реальная хроматограмма является результатом разделения образца по ММ при движении по колонке и одновременном перемешивании полимергомологов за счет размывания зон. Поэтому функцию F(W) в соотношении (9) следует понимать как хроматограмму исправленную на ПУ. Эта функция является решением интегрального уравнения Фредгольма I рода. Известно достаточно много способов коррекции на ПУ. См., например, . Однако, в современных высокоэффективных хроматографических системах в большинстве случаев вклад ПУ в хроматограмму невелик по сравнению с ММР и им можно пренебречь. Важнейшей процедурой является калибровка хроматографа по ММ исследуемого полимера. При наличии соответствующих узкодисперсных стандартов с разными ММ, определяют для них объемы элюирования (V R или Ve) и строят калибровочную зависимость подобную той, что показана на рис.4. Обычно калибровочное соотношение ищут в форме (): n lg C V e () Наиболее часто применяются полиномы первой или третьей степени. Полиномы нечетных степеней (3. 5, 7) наиболее точно описывают характерную форму калибровочных кривых с верхним и нижним пределами по ММ.. Наборы узкодисперсных стандартов существуют для таких полимеров как полистирол, полиизопрен, полиметилметакрилат,

7 полиэтиленоксид, декстраны и некоторые другие. Можно воспользоваться, кроме того, методом универсальной калибровки, впервые введенным в практику Бенуа и сотрудниками . Метод основан на том обстоятельстве, что гидродинамический объем макромолекул пропорционален произведению характеристической вязкости на молекулярную массу полимера и может быть использован как функция элюирующего объема в качестве универсального параметра для разных полимеров. Тогда мы строим универсальное калибровочное соотношение (), () lg η n BV e, () пользуясь набором каких-либо стандартов и известным соотношением Марка-Куна-Хаувинка (3): η K a. (3) Для перехода от соотношения вида () к калибровочной зависимости () для исследуемого полимера достаточно воспользоваться соответствующим ему соотношением Марка- Куна-Хаувинка, после чего получим (4): lg n B V e + a lg K. (4) В результате из даных гель-проникающей хроматографии можно найти средние молекулярные массы разной степени усреднения, которые, по определению, представляют собой следующие величины: () n - среднечисленная ММ, W () d W d w z W d W d W d W d - среднемассовая ММ, - z-средняя ММ. Отношения ММ разной степени усреднения характеризуют статистическую ширину ММР. Наиболее часто применяют отношение w / n, которое называют индексом полидисперсности. 4. ПРОВЕДЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ ПО АНАЛИЗУ ММР ПОЛИМЕРА МЕТОДОМ ГЕЛЬ-ПРОНИКАЮЩЕЙ ХРОМАТОГРАФИИ Цель работы: Познакомиться с работой жидкостного хроматографа, методикой проведения хроматографического эксперимента, методикой калибровки хроматографа по узкодисперсным полимерным стандартам и расчета средних молекулярных масс. Оборудование:)Жидкостной хроматограф, состоящий из насоса, инжектора, термостата колонок, колонки с полимерным сорбентом и системы обработки данных на базе персонального компъютера.)Набор узкодисперсных стандартов с разными ММ (полистирольных или полиэтиленоксидных). 3) Исследуемый образец с неизвестными молекулярными массами. Порядок работы:) Приготовление раствора смеси стандартов. 7

8 ) Получение хроматограммы стандартов и определение их объемов удерживания (V e). 3) Построение калибровочной зависимости в виде (). 4) Приготовление раствора исследуемого полимера. 5) Получение хроматограммы исследуемого полимера. 6) Расчет средних ММ образца. На рисунке 5 представлен типичный пример хроматограммы полимерного образца, подготовленный для расчета средних ММ, а именно, проведена базовая линия, определяющая начало и конец хроматограммы, и затем хроматограмма разбита на равные доли вдоль оси времени, так называемые слайсы. n w z A, A A A, A A. Рис. 5. Для каждого слайса определяется его площадь A и молекулярная масса, соответствующая его середине, вычисляется из калибровочной зависимости. Затем вычисляются средние молекулярные массы: 8

9 3. ЛИТЕРАТУРА. М.Б.Тенников, П.П.Нефедов, М.А.Лазарева, С.Я.Френкель, О едином механизме жидкостной хроматографии макромолекул на пористых сорбентах, Высокомолек. соед, А, 977, т.9, N.3, с С.Г.Энтелис, В.В.Евреинов, А.И.Кузаев, Реакционноспособные олигомеры, М: Химия, Т.М.Зимина, Е.Е.Кевер, Е.Ю.Меленевская, В.Н.Згонник, Б.Г.Беленький, Об экспериментальной проверке концепции хроматографичкской "невидимости" в критической хроматографии блоксополимеров, Высокомолек. соед., А, 99, т.33, N6, с И.В.Благодатских, А.В.Горшков, Исследование адсорбционных свойств кольцевых макромолекул в критической области, Высокомолек. соед., А, 997, т.39, N6, с А.М.Скворцов, А.А.Горбунов, Скейлинговая теория хроматографии линейных и кольцевых макромолекул, Высокомолек. соед., А, т.8, N8, с Б.Г.Беленький, Л.З.Виленчик, Хроматография полимеров, М: Химия, W.W.Yau, J.J.Krkland, D.D.Bly, odern Sze-Excluson Lqud Chromatography, New York: John Wley & Sons, Е.Л.Стыскин, Л.Б.Ициксон, Е.Б.Браудо. Практическая высокоэффективная жидкостная хроматография. Москва Ch Wu, Ed.Column Handbook for Sze Excluson Chromatography, N-Y: Academc Press..Z.Grubsc, R.Rempp, H.Benor, J. Polym. Sc., B, 967, v.5, p


УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н.НЕСМЕЯНОВА. НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР ПО ФИЗИКЕ И ХИМИИ ПОЛИМЕРОВ Благодатских И.В ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ ПОЛИМЕРОВ

1 Высокомолекулярные соединения (Лысенко Е.А.) Лекция 7. Фракционирование макромолекул 2 1. Понятие о фракционировании. 2. Препаративное фракционирование. 3. Метод турбидиметрического титрования. 4. Гель-проникающая

Лабораторная работа 7б Хроматографическое определение состава газовой фазы почв. Хроматография (от греч. chroma, родительный падеж chromatos цвет, краска) - физико-химический метод разделения и анализа

8. Вопросы 1. Дайте определение хроматографии. 2. Какие особенности хроматографии позволяют достичь лучшего разделения веществ с близкими свойствами по сравнению с другими методами разделения. 3. Перечислите

Московский физико-технический институт (Государственный университет) Кафедра молекулярной физики Физические методы исследования Лекция Газовая хроматография Теория и принципы г. Долгопрудный, ноября г.

04.07 Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Хроматография г. Долгопрудный, 6 апреля 07г. План. История возникновения

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 0 Газовая хроматография г. Долгопрудный, 5 ноября 0г. План. История

Аналитическая химия 4 семестр, Лекция 17. Модуль 3. Хроматография и другие методы анализа. Хроматография. Принцип и классификация методов. 1. Принцип хроматографического разделения. Стационарная и подвижная

Открытие хроматографии(1903 г.) МИХАИЛ СЕМЕНОВИЧ ЦВЕТ (1872-1919) Основные этапы развития хроматографии 1903 г. Открытие хроматографии (Цвет М.С.) 1938 г. Тонкослойная или планарная хроматография (Измайлов

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 7 Газовая и жидкостная хроматография. Практическая

ГЛАВА 7 ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи определения компонентов хлорофилла. Метод оказался универсальным.

Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Газовая хроматография Техника и методы эксперимента г. Долгопрудный, 3 апреля

Тема 5. Основы реологии. Вязкость растворов полимеров. Теоретическая часть. Вязкие жидкости и растворы высокомолекулярных веществ (ВМС) по характеру течения делятся на ньютоновские и неньютоновские. Ньютоновские

Преимущества колонок Agilent AdvanceBio SEC для эксклюзионной хроматографии при анализе биофармацевтических препаратов Сравнение колонок различных производителей для повышения качества данных Обзор технической

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Жидкостная хроматография Методы и техника г.

Журнал Аналитической химии, 5, том 6, 7, c. 73-78 УДК 543.544 Моделирование газовой хроматографии при заданной зависимости константы Генри от температуры. 5г. Прудковский А.Г. Институт геохимии и аналитической

Колонки для эксклюзионной хроматографии Agilent AdvanceBio SEC для анализа агрегации: совместимость с приборами Обзор технической информации Введение Колонки Agilent AdvanceBio SEC это новое семейство

МУЛЬТИДЕТЕКТОРНая ГЕЛЬ-ПРОНИКАЮЩая ХРОМАТОГРАФИя для АНАЛИЗа ПОЛИМЕРОВ К.Свирский, Agilent Technologies, [email protected] Гель-проникающая хроматография единственная хроматографическая методика,

АННОТАЦИЯ рабочей программы учебной дисциплины «Введение в хроматографические методы анализа» по направлению подготовки 04.03.01 Химия по профилю подготовки «Аналитическая химия» 1. Цели освоения дисциплины

46. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ Хроматографическими называют многостадийные методы разделения, в которых компоненты образца распределяются между двумя фазами неподвижной и подвижной. Неподвижная

МИНОБРНАУКИ РОССИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Аннотированная рабочая программа дисциплины Хроматографические методы анализа Направление подготовки

Научно-технологическая компания СИНТЕКО М Е Т О Д И К А КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА КОФЕ И ЧАЯ НА СОДЕРЖАНИЕ КОФЕИНА МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. ДЗЕРЖИНСК 1997г. 1 Настоящий документ распространяется

Лекция 7 (9.05.05) ПРОЦЕССЫ ПЕРЕНОСА В ГАЗАХ Всякая термодинамическая система, под которой мы понимаем совокупность большого числа молекул, при неизменных внешних условиях приходит в состояние термодинамического

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

Высокомолекулярные соединения (Лысенко Е.А.) Лекция 5 (-Температура). -температура и идеальность раствора.. -температура и фазовые равновесия. 3. -температура и размеры макромолекулярных клубков. .. Влияние

Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

Теория реального вещества. Наукой представлено большое число теории или законов реального газа. Наиболее известный закон реального газа Ван-дер-Ваальса, который увеличивает точность описания поведения

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА АНАЛИТИЧЕСКОЙ ХИМИИ П Р О Г Р А М М А С П Е Ц И А Л Ь Н О Г О К У Р С А «ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ» ДЛЯ СТУДЕНТОВ 5 КУРСА СПЕЦИАЛЬНОСТИ

Лекция 7. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ 1. Поверхностное натяжение 1.1. Поверхностная энергия. До сих пор мы не учитывали существования границы раздела различных сред*. Однако ее наличие может оказаться весьма

Вязкоупругость полимерных жидкостей. Оснвные свойства полимерных жидкостей. К полимерным жидкостям с сильно переплетенными цепями относятся полимерные расплавы, концентрированные растворы и полуразбавленные

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 9 Хроматография. Введение г. Долгопрудный, 9 октября 0г. План.

АНАЛИТИЧЕСКАЯ ХИМИЯ УДК 543.544 АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ В АНАЛИЗЕ БИОГАЗА 1999 г. М.В. Николаева НИИ химии ННГУ им. Н.И. Лобачевского Л.П. Прохорова Нижегородская станция аэрации Разработана методика

СОВРЕМЕННАЯ ПРЕПАРАТИВНАЯ ФЛЕШ-ХРОМАТОГРАФИЯ Часть 2* А.Аболин, к.х.н., "ГалаХим" [email protected] П.-Ф. Икар, Interchim (Франция) Мы продолжаем публиковать материалы о современных методах препаративной

Краткое руководство по выбору колонок и стандартов для гель-проникающей хроматографии РУКОВОДСТВО ПО ВЫБОРУ Введение Гель-проникающая хроматография (ГПХ) это методика оценки молекулярномассового распределения

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография ОФС.1.2.1.2.0001.15 Взамен ст. ГФ XI, вып.1 Хроматографией называется метод разделения смесей веществ, основанный

Программное обеспечение Agilent для гель-проникающей хроматографии Единое и универсальное решение для быстрого и простого анализа полимеров Основные характеристики Введение Компания Agilent Technologies

2.2.29. ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Высокоэффективная жидкостная хроматография (ВЭЖХ) представляет собой метод разделения, основанный на различном распределении веществ между двумя не смешивающимися

Ярославский государственный педагогический университет им. К. Д. Ушинского Кафедра общей физики Лаборатория молекулярной физики Лабораторная работа 5 Изучение статистических закономерностей на доске Гальтона

Лекция 3. СВОБОДНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ ГРАНИЦЫ РАЗДЕЛА ФАЗ Поверхностные силы. Поверхностное натяжение Рассмотрим систему содержащую жидкость и равновесный с ней пар. Распределение плотности в системе

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

Лекция 7 Разветвленные цепные реакции. Критические явления в разветвленных цепных реакциях. Э.-К. стр. 38-383, 389-39. Простое выражение для скорости образования радикалов: d r f(p) g(p) (1)

Лекция 6 Лукьянов И.В. Явления переноса в газах. Содержание: 1. Длина свободного пробега молекул. 2. Распределение молекул по длинам свободного пробега. 3. Диффузия. 4. Вязкость газа (внутреннее трение).

Федеральное государственное бюджетное учреждение науки «Кировский научно исследовательский институт гематологии и переливания крови Федерального медико биологического агентства» 3.3.2. Медицинские иммунобиологические

1. Пояснительная записка 1.1. Требования к студентам Студент должен обладать следующими исходными компетенциями: базовыми положениями математических и естественных наук; владеть навыками самостоятельной

1 ЛЕКЦИЯ 10 Две системы в диффузионном контакте. Химический потенциал. Условие равновесия фаз. Теплота перехода. Формула Клапейрона-Клаузиуса. Две системы в диффузионном контакте Равновесное состояние

1. Перечень компетенций с указанием этапов (уровней) их формирования. ПК-1: способность использовать знания теоретических, методических, процессуальных и организационных основ судебной экспертизы, криминалистики

Тема. Физико-химия поверхностных явлений. Адсорбция. Поверхностные явления проявляются в гетерогенных системах, т.е. системах, между компонентами которых имеется поверхностьраздела. Поверхностными явлениями

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет ИЗУЧЕНИЕ КОЭФФИЦИЕНТОВ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для выполнения лабораторной работы Томск 2014 Рассмотрено и утверждено

Высокоэластичность полимерных сеток. Полимерные сетки. Полимерные сетки состоят из длинных полимерных цепей, сшитых между собой и образующих тем самым гигантскую трехмерную макромолекулу. Все полимерные

Газовая хроматография 1 Требования к веществам 1. Летучесть 2. Термостабильность (вещество должно испарятся без разложения) 3. Инертность Схема газового хроматографа 1 2 3 4 5 1. Баллон с газом-носителем

Учебная программа составлена на основе образовательного стандарта ОСВО 1-31 05 01 2013 и учебного плана УВО G 31 153/уч. 2013 г. СОСТАВИТЕЛЬ: В.А.Винарский, доцент, кандидат химических наук, доцент РЕКОМЕНДОВАНА

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография на бумаге ОФС.1.2.1.2.0002.15 Взамен ст. ГФ XI, вып.1 Хроматографический процесс, протекающий на листе фильтровальной

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ПОЛИМЕРНЫЕ СТАНДАРТЫ AGILENT ДЛЯ ГЕЛЬ-ПРОНИКАЮЩЕЙ/ ЭКСКЛЮЗИОННОЙ ХРОМАТОГРАФИИ Содержание ПОЛИМЕРНЫЕ СТАНДАРТЫ ДЛЯ ГПХ... 3 InfinityLab EasiVial...5 InfinityLab EasiCal...8 Стандарты полистирола...9 Стандарты

Г Р У П П А К О М П А Н И Й Б И О Х И М М А К З А К Р Ы Б ИО 1 1 9 8 9 9, Россия, Москва, Ленин Тел./Факс (0 9 5) 939-59-67, тел. 939- И Н С Т Р У К Ц И Я по применению Аналитического комплекта МОСКВА

Теория ионной хроматографии: универсальный подход к описанию параметров пика 1998г. А.Г.Прудковский, А.М.Долгоносов Институт геохимии и аналитической химии им.в.и.вернадского Российской академии наук 117975

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Детекторы в хроматографии Жидкостная хроматография

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Электрофорез ОФС.1.2.1.0021.15 Взамен ст. ГФ XI, вып.1 Электрофорез метод анализа, основанный на способности заряженных частиц,

1 Высокомолекулярные соединения (Лысенко Е.А.) Лекция 10. Термомеханический анализ аморфных полимеров. 2 1. Основные понятия механического анализа физических тел. 2. Термомеханические кривые аморфных полимеров

5 ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ 5 Парциальные мольные величины компонентов смеси Рассмотрение термодинамических свойств смеси идеальных газов приводит к соотношению Ф = Σ Ф, (5) n где Ф любое экстенсивное

6.. Московский физико-технический институт (Государственный университет) Кафедра молекулярной физики Физические методы исследования Лекция Газовая хроматография. Техническая реализация Жидкостная хроматография

Высокомолекулярные соединения (Лысенко Е.А.) Лекция 4. Фазовые равновесия в растворах полимеров.. Кинетика растворения. Концентрационные режимы.. Уравнение состояния полимерного раствора. . Фазовые равновесия

Лабораторная работа. Определение содержания аренов состава С 8 в бензиновой фракции Знание углеводородного (УВ) состава нефтей и конденсатов на молекулярном уровне имеет большое значение как для нефтехимии

Идеальная полимерная цепь. Идеальная полимерная цепь. Идеальная цепь - это модельная цепь, в которой пренебрегают так называемыми объемными взаимодействиями, т.е. взаимодействиями удаленных по цепи звеньев.

Лабораторная работа 1.17 ИЗУЧЕНИЕ ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН М.В. Козинцева Цель работы: изучение распределения случайных величин на механической модели (доска Гальтона). Задание:

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Декан химического факультета Д.В. Свиридов 2011 г. Регистрационный УД- /р РАСТВОРЫ ПОЛИМЕРОВ Учебная программа по специальности 1-31 05 01 Химия (по направлениям)