Поток вектора электрического смещения через замкнутую поверхность. Вектор индукции электрического поля

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

,

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


,

из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.

Введем понятие потока вектора электрической индукции. Рассмотрим бесконечно малую площадку. В большинстве случаев необходимо знать не только величину площадки, но и ее ориентацию в пространстве. Введем понятие вектор-площадка. Условимся под вектором-площадкой понимать вектор, направленный перпендикулярно площадке и численно равной величине площадки.

Рисунок 1 – К определению вектора – площадки

Назовем потоком вектора че­рез площадку
скалярное произведение векторови
. Таким образом,

Поток вектора через произвольную поверхностьнаходится интегрированием всех элементарных потоков

(4)

Если поле однородно и плоская поверхность расположена перпен­дикулярно к полю, то:

. (5)

Приведенное выражение определяет число силовых линии, пронизывающих площадку в единицу времени.

Теорема Остроградского-Гаусса. Дивергенция напряженности электрического поля

Поток вектора электрической индукции сквозь произвольную замкнутую по­верхность равен алгебраической сумме свободных электрических зарядов, охватываемых этой поверхностью

(6)

Выражение (6) представляет собой теорему О-Г в интегральном виде. Теорема 0-Г оперирует с интегральным (суммарным) эффектом, т.е. если
то неизвестно, означает ли это отсутствие зарядов во всех точках исследуемой части пространства, или, то, что сумма положительных и отрицательных зарядов, расположенных в разных точках этого пространства равны нулю.

Для нахождения расположенных зарядов и их величины по заданному полю необходимо соотношение, связывающее вектор электрической индукции в данной точке с зарядом в той же точке.

Предположим, что нам нужно определить наличие заряда в точ­ке а (рис.2)

Рисунок 2 – К расчету дивергенции вектора

Применим теорему О-Г. Поток вектора электрической индукции через произвольную поверхность, ограничивающую объем, в которой находится точка а , равен

Алгебраическую сумму зарядов в объеме можно записать в виде объемного интеграла

(7)

где - заряд, отнесенный к единице объема;

- элемент объема.

Для получения связи между полем и зарядом в точке а будем уменьшать объем, стягивая поверхность к точке а . При этом разделим обе части нашего равенства на величину . Переходя к пределу, получим:

.

Правая часть полученного выражения является по определению объемной плотностью заряда в рассмотренной точке пространства. Левая часть представляет собой предел отношения потока вектора электрической индукции через замкнутую по­верхность к объему, ограниченному этой поверхностью, когда объем стремится к нулю. Эта скалярная величина является важной характеристикой электрического поля и носит название дивергенции вектора .

Таким образом:

,

следовательно

, (8)

где - объемная плотность заряда.

При помощи этого соотношения просто решается обратная задача электростатики, т.е. нахождение распределенных зарядов по известному полю.

Если вектор задан, значит известны его проекции
,
,
на координатные оси как функции координат и для вычисления распределенной плотности зарядов, создавших заданное поле, оказывается достаточно найти сумму трех частных производных этих проекций по соответствующим переменным. В тех точках для которых
зарядов нет. В точках где
положительна, имеется положительный заряд с объемной плотностью, равной
, а в тех точках где
будет иметь отрицательное значение, находится отрицательный заряд, плотность которого также определяется значением дивергенции.

Выражение (8) представляет теорему 0-Г в дифференциальной форме. В такой форме теорема показывает, что источниками электрического поля является свободные электрические заряды; силовые линии вектора электрической индукции начинаются и заканчиваются соответственно на положительных и отрицательных зарядах.

Теорема Гаусса для электрической индукции (электрического смещения)[

Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана еще и иначе (альтернативным образом) - через поток вектора электрического смещения(электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

В дифференциальной форме:

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

или в дифференциальной форме

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле . Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым .

Теорема Гаусса для ньютоновской гравитации

Для напряжённости поля ньютоновской гравитации (ускорения свободного падения) теорема Гаусса практически совпадает с таковой в электростатике, за исключением только констант (впрочем, всё равно зависящих от произвольного выбора системы единиц) и, главное, знака :

где g - напряжённость гравитационного поля, M - гравитационный заряд (то есть масса) внутри поверхности S , ρ - плотность массы, G - ньютоновская константа.

    Проводники в электрическом поле. Поле внутри проводника и на его поверхности.

Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Проводники - металлические тела в твердом и жидком состоянии, жидкие растворы электролитов. Свободные заряды проводника, внесенного в электрическое поле, под его действием приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Когда напряженность электрического поля в проводнике становится равной нулю, электроны прекращают движение. Явление разделения разноименных зарядов в проводнике, помещенным в электрическое поле называется электростатической индукцией. Внутри проводника электрического поля нет. Это используют для электростатической защиты - защиты с помощью металлических проводников от электрического поля. Поверхность проводящего тела любой формы в электрическом поле является эквипотенциальной поверхностью.

    Конденсаторы

Для получения устройств, которые при небольшом относительно среды потенциале накапливали бы на себе (конденсировали) заметные по величине заряды используют тот факт, что электроемкость проводника возрастает при приближении к нему других тел. Действительно, под действием поля, создаваемого заряженными проводниками, на поднесенном к нему теле возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды (рис.15.5). Заряды, противоположные по знаку заряду проводника q располагаются ближе к проводнику, чем одноименные с q, и, следовательно, оказывают большое влияние на его потенциал.

Поэтому при поднесении к заряженному проводнику какого либо тела напряженность поля уменьшается, а, следовательно, уменьшается потенциал проводника. Согласно уравнение это означает увеличение емкости проводника.

Конденсатор состоит из двух проводников (обкладок) (рис.15.6), разделенных прослойкой диэлектрика. При приложении к проводнику некоторой разности потенциалов его обкладки заряжаются равными по величине зарядами противоположного знака. Под электроемкостью конденсатора понимается физическая величина, пропорциональная заряду q и обратно пропорциональна разности потенциалов между обкладками

Определим емкость плоского конденсатора.

Если площадь обкладки S , а заряд на ней q, то напряженность поля между обкладками

С другой стороны разность потенциалов между обкладками откуда

    Энергия системы точечных зарядов, заряженного проводника и конденсатора.

Всякая система зарядов обладает некоторой потенциальной энергией взаимодействия, которая равна работе, затраченной на создание этой системы. Энергия системы точечных зарядов q 1 , q 2 , q 3 ,… q N определяется следующим образом:

где φ 1 – потенциал электрического поля, создаваемого всеми зарядами кроме q 1 в той точке, где находится зарядq 1 и т.д. Если изменяется конфигурация системы зарядов, то изменяется и энергия системы. Для изменения конфигурации системы необходимо совершение работы.

Потенциальную энергию системы точечных зарядов можно рассчитать другим способом. Потенциальная энергия двух точечных зарядов q 1 , q 2 на расстоянии друг от друга равна. Если зарядов несколько, то потенциальную энергию этой системы зарядов можно определить как сумму потенциальных энергий всех пар зарядов, которые можно составить для этой системы. Так, для системы трех положительных зарядов энергия системы равна

Электрическое поле точечного заряда q 0 на расстоянии от него в среде с диэлектрической проницаемостьюε (см. рисунок 3.1.3).

Рисунок 3.1.3

;

Потенциал – скаляр, его знак зависит от знака заряда, создающего поле.

Рисунок 3.1.4.

Электрическое поле равномерно заряженной сферы радиуса в точке С на расстоянииот её поверхности (рисунок 3.1.4). Электрическое поле сферы аналогично полю точечного заряда, равного заряду сферыq сф и сосредоточенного в её центре. Расстояние до точки, где определяется напряженность, равно (R +a )

Вне сферы:

;

Потенциал внутри сферы постоянен и равен ,

а напряженность внутри сферы равна нулю

Электрическое поле равномерно заряженной бесконечной плоскости с поверхностной плотностью σ (см. рисунок 3.1.5).

Рисунок 3.1.5.

Поле, напряженность которого во всех точках одинакова, называется однородным .

Поверхностная плотность σ – заряд единицы поверхности (, где– соответственно заряд и площадь плоскости). Размерность поверхностной плотности заряда.

Электрическое поле плоского конденсатора с одинаковыми по величине, но противоположными по знаку зарядами на пластинах (см. рисунок 3.1.6).

Рисунок 3.1.6

Напряженность между обкладками плоского конденсатора , вне конденсатораЕ =0.

Разность потенциалов u между пластинами (обкладками) конденсатора: , гдеd – расстояние между обкладками, – диэлектрическая проницаемость диэлектрика, помещённого между пластинами конденсатора.

Поверхностная плотность заряда на пластинах конденсатора равна отношению величины заряда на ней к площади пластины:.

    Энергия заряженного уединенного проводника и конденсатора

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид

Рассмотрим, как меняется значение вектора Е на границе раздела двух сред, например, воздуха (ε 1) и воды (ε = 81). На­пряженность поля в воде уменьшается скачком в 81 раз. Такое по­ведение вектора Е создает определенные неудобства при расчете полей в различных средах. Чтобы избежать этого неудобства вводят новый вектор D – вектор индукции или электрического смещения поля. Связь векторов D и Е имеет вид

D = ε ε 0 Е .

Очевидно, для поля точечного заряда электрическое смещение будет равно

Нетрудно увидеть, что электрическое смещение измеряется в Кл/м 2 , не зависит от свойств и графически изображается линиями, анало­гичными линиям напряженности.

Направление силовых линий поля характеризует направле­ние поля в пространстве (силовые линии, конечно, не существуют, их вводят для удобства иллюстрации) или направление вектора на­пряженности поля. С помощью линий напряженности можно характеризовать не только направление, но и величину напряженно­сти поля. Для этого условились прово­дить их с определенной густотой, так, чтобы число линий напряженности, про­низывающих единицу поверхности, пер­пендикулярной линиям напряженности, было пропорционально модулю вектора Е (рис. 78). Тогда число линий, пронизываю­щих элементарную площадку dS, нормаль к которой n образует угол α с вектором Е , равно E dScos α = E n dS,

где E n - составляющая вектора Е по направлению нормали n . Величину dФ Е = E n dS = E dS называют потоком вектора напряженности че­рез площадку dS (dS = dS·n ).

Для произвольной замкнутой поверхности S поток вектора Е через эту поверхность равен

Аналогичное выражение имеет поток вектора электрического сме­щения Ф D

.

Теорема Остроградского-Гаусса

Эта теорема позволяет определить поток векторов Е и D от любого количества зарядов. Возьмем точечный заряд Q и определим поток вектора Е че­рез шаровую поверхность радиуса r , в центре которой он располо­жен.

Для шаровой поверхности α = 0, cos α = 1, E n = E, S = 4 πr 2 и

Ф E = E · 4 πr 2 .

Подставляя выражение для Е получим

Таким образом, из каждого точечного заряда выходит поток Ф Е вектора Е равный Q/ ε 0 . Обобщая этот вывод на общий случай про­извольного числа точечных зарядов дают формулировку теоремы: полный поток вектора Е через замкнутую поверхность про­извольной формы численно равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхно­сти, поделенной на ε 0 , т.е.

Для потока вектора электрического смещения D можно получить аналогичную формулу

поток вектора индукции через замкнутую поверхность равен алгебраической сумме электрических зарядов, охватываемых этой поверхностью.

Если взять замкнутую поверхность, не охватывающую заряд, то каждая линия Е и D будут пересекать эту поверхность дважды – на входе и выходе, поэтому суммарный поток оказывается равным нулю. Здесь необходимо учитывать алгебраическую сумму линий, входящих и выходящих.

Применение теоремы Остроградского-Гаусса для расчета элек­трических полей, создаваемых плоскостями, сферой и цилин­дром

    Сферическая поверхность радиуса R несет на себе заряд Q, равномерно распределенный по поверхности с поверхностной плотностью σ

Возьмем точку А вне сферы на расстоянии r от центра и проведем мысленно сферу радиуса r симметричную заряженной (рис. 79). Ее площадь S = 4 πr 2 . Поток вектора Е будет равен

По теореме Остроградского-Гаусса
, следовательно,
учитывая, чтоQ = σ·4 πr 2 , получим

Для точек, находящихся на поверхности сферы (R = r)

Для точек, находящихся внутри полой сферы (внутри сферы нет за­ряда), Е = 0.

2 . Полая цилиндрическая поверхность радиусом R и длиной l заряжена с постоянной поверхностной плотностью заряда
(Рис. 80). Проведем коаксиальную цилиндрическую поверхность радиусаr > R.

Поток вектора Е через эту поверхность

По теореме Гаусса

Приравнивая правые части приведенных равенств, получим

.

Если задана линейная плотность заряда цилиндра (или тонкой нити)
то

3. Поле бесконечных плоскостей с поверхностной плотно­стью заряда σ (рис. 81).

Рассмотрим поле, создаваемое бесконечной плоскостью. Из сооб­ражений симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости.

В симметричных точках Е будет одинакова по величине и противоположна по направлению.

Построим мысленно поверхность цилиндра с основанием ΔS. Тогда через каждое из оснований цилиндра будет выходить поток

Ф Е = Е ΔS, а суммарный поток через цилиндрическую поверхность будет равен Ф Е = 2Е ΔS.

Внутри поверхности заключен заряд Q = σ · ΔS. Согласно теореме Гаусса должно выполняться

откуда

Полученный результат не зависит от высоты выбранного цилиндра. Таким образом напряжённость поля Е на любых расстояниях одинакова по величине.

Для двух разноименно заряженных плоскостей с одинаковой по­верхностной плотностью заряда σ по принципу суперпозиции вне про­странства между плоскостями напряжённость поля равна нулю Е = 0, а в пространстве между плос­костями
(рис. 82а). В случае, если плоскости заряжены одноименными зарядами с одинаковой поверхностной плотностью зарядов, наблюдается об­ратная картина (рис. 82б). В пространстве между плоскостями Е=0, а в пространстве за пределами плоскостей
.

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.