Формирование понятий обратных тригонометрических функций у учащихся на уроках алгебры. Обратные тригонометрические функции, их графики и формулы Производные arc функций

В этой статье мы разберем такие важные понятия в тригонометрии, как арксинус, арккосинус, арктангенс и арккотангенс. Мы можем найти значения чисел (углов), если знаем данные тригонометрических функций; это и есть та самая задача, что приводит нас к обратным функциям.

Ниже мы не только дадим определения основных понятий и общепринятые обозначения, но и приведем расчеты, из которых будет ясно, что они из себя представляют. В конце мы попробуем связать понятия арккотангенса, арктангенса, арккосинуса и арксинуса с понятием единичной окружности.

Основные определения

Все перечисленные выше понятия - арксинус, арккосинус, арктангенс и арккотангенс – можно рассматривать как в качестве числа, так и в качестве угла. Ранее мы уже говорили о такой же двойственности восприятия прямых функций (синус, косинус и др.) Рассмотрим оба подхода отдельно.

Арксинус и другие обратные функции как угол

Допустим, у нас есть некий угол, синус которого равен 1 2 . Обозначим его буквой альфа.

Итак, sin α = 1 2 . Такое значение синуса может быть у бесконечного числа углов: α = (− 1) k · 30 ° + 180 ° · k (α = (− 1) k · π / 6 + π · k) , где k ∈ Z . Поэтому нам потребуется ввести дополнительные условия. Пусть угол альфа будет не менее - 90 и не более 90 градусов (т.е. (в радианах он будет принадлежать отрезку [ − π 2 , π 2 ]),). В таком случае наше равенство sin α = 1 2 позволит обозначить угол альфа более ясно: в таких условиях им будет только один угол – в 30 градусов (π 6 радианов).

Исходя из указанного равенства, мы можем сделать вывод, что угол альфа определяется при условии любого числа a ∈ [ − 1 , 1 ] и условии − 90 ° ≤ α ≤ 90 ° . Этот угол - и есть арксинус числа a .

Сформулируем основные определения.

Определение 1

  • Арксинус - это функция, обратная sin . Для некоторого числа а она представляет собой угол от - 90 до 90 градусов, sin которого равен a .
  • Арккосинус - функция, обратная косинусу. Для числа a - это такой угол, cos которого равен a , и который при этом находится в диапазоне от 0 до 180 градусов.
  • Арктангенс -тригонометрическая функция, обратная тангенсу. Для некоторого числа a u 1 это угол, величина которого находится в диапазоне от - 90 до 90 градусов, тангенс которого равен a .
  • Арккотангенс числа а есть также угол величиной от 0 до 190 градусов, котангенс которого равен a .

Подытожим: так, запись a r c sin 0 , 3 означает всего лишь угол, синус которого равняется 0 , 3 ; a r c cos 0 , 7 - угол с косинусом 0 , 7 и так далее.

Подписи вида a r c sin , a r c cos , a r c t g и a r c c t g являются общепринятыми для записи обратных тригонометрических функций. Иногда в справочниках, особенно тех, что составлены на английском языке, можно встретить немного другие обозначения для арккотангенса и арктангенса - a r c tan и a r c c o t . Они значат то же самое, но у нас не распространены, поэтому пользоваться ими мы не будем.

Вышеуказанные определения можно сформулировать в более краткой и символической форме:

Определение 2

  • arcsin числа а в диапазоне от минус единицы до единицы есть угол с sin α = a величиной − 90 ° ≤ α ≤ 90 ° (− π 2 ≤ α ≤ π 2)
  • arccos числа а в диапазоне от минус единицы до единицы есть угол с cos = a величиной 0 ° ≤ α ≤ 180 ° (0 ≤ α ≤ π)
  • arctg любого числа а есть угол с t g α = a величиной − 90 ° < α < 90 ° (− π 2 < α < π 2)
  • arctg любого числа а есть угол с c t g α = a величиной что 0 ° < α < 180 ° (0 < α < π)

Обратите внимание, что в определениях arcsin и arccos стоит диапазон от минус единицы до плюс единицы, а для двух других функций а может быть любым числом. Получается, что арксинус 3 - ошибочная запись, ведь тройка не принадлежит у указанному диапазону. Также бессмысленны записи a r c sin 5 , a r c cos - 7 , a r c sin - 3 , 7 2 3 и с любыми другими значениями, которые выходят за пределы нужного нам отрезка, ведь синус и косинус не бывают больше единицы и меньше минус единицы. В случае с арктангенсом и арккотангенсом такой проблемы нет, для них подойдет любое действительное число, в том числе ноль, пи и так далее.

Пример 1

Теперь разберем примеры обратных функций числа. Для начала возьмем арксинус. Из его базового определения следует, что угол π 3 - арксинус числа 3 2 , таким образом, (в данном случае α = 3 2 и α = π 3).

3 2 - число, которое меньше единицы и больше минус единицы, а угол π 3 находится в пределах от - π 2 до π 2 и sin π 3 = 3 2 .

Пример 2

Другими примерами a r c sin являются записи вида a r c sin (− 1) = − 90 ° , a r c sin (0 , 5) = π 6 , a r c sin (- 2 2) = - π 4 . При этом π 10 не может быть a r c sin 1 2 , потому что sin (π 10) ≠ 1 2 .

Пример 3

Возьмем следующий пример: sin 270 градусов - минус единица, но при этом обратное неверно: угол 270 - не арксинус - 1 , потому что a r c sin должен быть не более 90 градусов. Угол в 270 градусов не является арксинусом ни одного числа, потому что лежит за пределами нужного диапазона.

Пример 4

Найдем примеры других обратных функций. Так, угол 0 радианов есть арккосинус 1 , т.е, a r c cos 1 = 0 .Здесь все условия арккосинуса выполняются, число принадлежит нужному отрезку, угол заданной величины находится в пределах от нуля до пи и cos 0 = 1 . Угол π 2 - арккосинус нуля: a r c cos 0 = π 2 .

Пример 5

Согласно определению арктангенса, значения a r c t g (− 1) = − π 4 или a r c t g (− 1) = − 45 ° . Арктангенс корня из трех равен 60 градусам (π 3 рад) . Из этого можно сделать вывод, что a r c c t g 0 = π 2 , так как угол π 2 лежит в рамках от 0 до π и c t g (π 2) = 0 .

Если вы хотите более подробно изучить такой подход к определению обратных тригонометрических функций, рекомендуем вам учебник Кочеткова (ч.1, стр. 260-278)

Арксинус и другие обратные функции как число

В том случае, если в задаче речь идет, скажем, о синусе угла, то логично его арксинус также воспринимать как угол. Если нам нужно, например, вычислить косинус некоторого числа, то тут важно встать на другую точку зрения и рассмотреть обратные функции как числа. Исходя из второго подхода, можно немного переформулировать определения:

Определение 3

  • Арксинус а есть некоторое число, t ∈ [ − π 2 , π 2 ] , синус которого равен a .
  • Арккосинус числа a ∈ [ − 1 , 1 ] есть некоторое число t ∈ [ 0 , π ] , косинус которого равен a .
  • Арктангенс числа a ∈ (− ∞ , + ∞) - это такое число t ∈ (− π 2 , π 2) , тангенс которого равен a .
  • Арккотангенс числа a ∈ (− ∞ , + ∞) есть такое число t ∈ (0 , π) , котангенс которого равен a .

Такие формулировки типичны для большинства современных учебников по математике.

Пример 6

Какой же подход следует выбирать? Как понять, когда лучше рассматривать значения арксинуса и прочих функций как углы, а когда - как числа? Это можно понять из контекста задачи. Обычно если там упоминается, скажем, a r c sin a - 11 ° , то это угол. Если мы видим запись вида π − a r c t g a , то, скорее всего, это просто число или же угол, измеренный в радианах. Если же встречаются просто формулировки вида a r c sin , a r c c t g и др. без указаний чисел и значений, то мы вольны выбирать любой подход, который хотим.

Более наглядно представить обратные функции числа можно геометрически: ведь если это углы, их можно изобразить на чертеже. Это просто сделать, если вы еще не забыли базовые определения основных прямых функций.

Для этого нам понадобится уже знакомая нам единичная окружность. Ее дуги, связывающие между собой основные углы, и будут соответствовать величинам обратных функций.

Например, возьмем дугу, которая проиллюстрирует нам арксинус некого числа a . Проведем линию синусов и укажем на ней точку в соответствии с величиной a . Из этой точки теперь нужно попасть к оси абсцисс (возьмем положительное направление). У нас получился луч, который пересечет окружность в особой точке. Арксинус числа a - это и есть часть дуги окружности от этой точки до начала координат. Вспомним два подхода к рассмотрению функций: как угол и как число. Угол, соответствующий дуге, - это иллюстрация арксинуса в рамках первого подхода, а длина дуги, выраженная количественно, иллюстрирует арксинус в рамках второго.

Теперь нарисуем дуги, которые проиллюстрируют для нас остальные обратные функции. На втором графике они отмечены синими линиями. Взгляните, как можно графически отобразить понятия a r c sin , a r c cos , a r c t g , a r c c t g для произвольного числа a (в указанных выше диапазонах):

Вывод: что такое аркфункции

В итоге мы можем сформулировать следующее: для любого числа a a ∈ [ − 1 , 1 ] можно вычислить углы - арксинус и арккосинус, а для каждого действительного числа - углы арктангенс и арккотангенс. Эта точка зрения позволяет сопоставить между собой числовое значение аргумента и конкретный угол, который является значением функции.

Мы можем смотреть на понятия a r c sin , a r c cos , a r c t g и a r c c t g как на числа и как на углы. Если мы берем их в качестве чисел, то они являются числовыми функциями: каждому значению а соответствует число.

Подытожим: все эти четыре понятия - и есть обратные тригонометрические функции. Название понятно: арксинус противопоставлен синусу, арккосинус - косинусу, арктангенс - тангенсу, арккотангенс - котангенсу. Поэтому еще одно распространенное собирательное название для них - аркфункции.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x ; arcsin x — это угол, sin которого равен x ),
  • арккосинус (обозначение: arccos x ; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x ),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x ),
  • арксеканс (обозначение: arcsec x ),
  • арккосеканс (обозначение: arccosec x или arccsc x ).

Арксинус (y = arcsin x ) - обратная функция к sin (x = sin y . Другими словами возвращает угол по значению его sin .

Арккосинус (y = arccos x ) - обратная функция к cos (x = cos y cos .

Арктангенс (y = arctg x ) - обратная функция к tg (x = tg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg .

Арккотангенс (y = arcctg x ) - обратная функция к ctg (x = ctg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg .

arcsec - арксеканс, возвращает угол по значению его секанса.

arccosec - арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arc us — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах , используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1 −1 » (минус первая степень) определяет функцию x = f -1 (y) , обратную функции y = f (x) ).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x , Arccos x , Arctan x , Arccot x и сохраним обозначения: arcsin x , arcos x , arctan x , arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями.

Функция, обратная косинусу

Областью значений функции y=cos x (см. рис. 2) является отрезок. На отрезке функция непрерывна и монотонно убывает.

Рис. 2

Значит, на отрезке определена функция, обратная функции y=cos x. Эту обратную функцию называют арккосинусом и обозначают y=arccos x .

Определение

Aрккосинусом числа а, если |а|1, называют угол, косинус которого принадлежит отрезку; его обозначают arccos а.

Таким образом, arccos а есть угол, удовлетворяющий следующим двум условиям: сos (arccos a)=a, |а|1; 0? arccos a ?р.

Например, arccos, так как cos и; arccos, так как cosи.

Функция y = arccos x (рис. 3) определена на отрезке, областью ее значений является отрезок. На отрезке функция y=arccos x непрерывна и монотонно убывает от р до 0 (поскольку y=cos х - непрерывная и монотонно убывающая функция на отрезке); на концах отрезка она достигает своих экстремальных значений: arccos(-1)= р, arccos 1= 0. Отметим, что arccos 0 = . График функции y = arccos x (см. рис. 3) симметричен графику функции y = cos x относительно прямой y=x .

Рис. 3

Покажем, что имеет место равенство arccos(-x) = р-arccos x.

В самом деле, по определению 0 ? arcсos х? р. Умножая на (-1) все части последнего двойного неравенства, получаем - р? arcсos х? 0. Прибавляя р ко всем частям последнего неравенства, находим, что 0? р-arccos х? р.

Таким образом, значения углов arccos(-х) и р - arccos х принадлежат одному и тому же отрезку. Поскольку на отрезке косинус монотонно убывает, то на нем не может быть двух различных углов, имеющих равные косинусы. Найдем косинусы углов arccos(-х) и р-arccos х. По определению cos (arccos x) = - x, по формулам приведения и по определению имеем: cos (р - - arccos х) = - cos (arccos х)= - х. Итак, косинусы углов равны, значит, равны и сами углы.

Функция, обратная синусу

Рассмотрим функцию y=sin х (рис. 6), которая на отрезке [-р/2;р/2] возрастающая, непрерывная и принимает значения из отрезка [-1; 1]. Значит, на отрезке [- р/2; р/2] определена функция, обратная функции y=sin x.

Рис. 6

Эту обратную функцию называют арксинусом и обозначают y=arcsin x. Введем определение арксинуса числа а .

Арксинусом числа а, если называют угол (или дугу), синус которого равен числу а и который принадлежит отрезку [-р/2; р/2]; его обозначают arcsin а.

Таким образом, arcsin а есть угол, удовлетворяющий следующим условиям: sin (arcsin a)=a, |a| ?1; -р/2 ? arcsin а? р/2. Например, так как sin и [- р/2; р/2]; arcsin , так как sin = и [- р/2; р/2].

Функция y=arcsin х (рис. 7) определена на отрезке [- 1; 1], областью ее значений является отрезок [-р/2;р/2]. На отрезке [- 1; 1] функция y=arcsin x непрерывна и монотонно возрастает от -р/2 до р/2 (это следует из того, что функция y=sin x на отрезке [-р/2; р/2] непрерывна и монотонно возрастает). Наибольшее значение она принимает при x =1: arcsin 1 = р/2, а наименьшее - при х = -1: arcsin (-1) = -р/2. При х = 0 функция равна нулю: arcsin 0 = 0 .

Покажем, что функция y = arcsin x является нечетной, т.е. arcsin (-х) = - arcsin х при любом х [- 1; 1].

Действительно, по определению, если |x| ?1, имеем: - р/2 ? arcsin x ? ? р/2. Таким образом, углы arcsin (-х) и - arcsin х принадлежат одному и тому же отрезку [- р/2; р/2].

Найдем синусы этих углов: sin (arcsin(-х)) = - х (по определению); поскольку функция y=sin x нечетная, то sin (-arcsin х)= - sin (arcsin x)= - х. Итак, синусы углов, принадлежащих одному и тому же промежутку [-р/2; р/2], равны, значит, равны и сами углы, т.е. arcsin (-х)= - arcsin х. Значит, функция y=arcsin x - нечетная. График функции y=arcsin x симметричен относительно начала координат.

Покажем, что arcsin (sin x) = х для любого х [-р/2; р/2].

Действительно, по определению -р/2 ? arcsin (sin x) ? р/2, а по условию -р/2 ? x ? р/2. Значит, углы х и arcsin (sin x) принадлежат одному и тому же промежутку монотонности функции y=sin x. Если синусы таких углов равны, то равны и сами углы. Найдем синусы этих углов: для угла х имеем sin x, для угла arcsin (sin x) имеем sin (arcsin(sin x)) = sin x. Получили, что синусы углов равны, следовательно, и углы равны, т.е. arcsin (sin x) = х. .

Рис. 7

Рис. 8

График функции arcsin (sin|x|) получается обычными преобразованиями, связанными с модулем, из графика y=arcsin (sin x) (изображен штриховой линией на рис. 8). Искомый график y=arcsin (sin |x-/4|) получается из него сдвигом на /4 вправо вдоль оси абсцисс (изображен сплошной линией на рис. 8)

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x .

Арктангенсом числа а называют угол из промежутка, тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ? arctg a ? р.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9) .

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(-x) = - arctgx, т.е. что арктангенс - нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Функция, обратная котангенсу

Функция y = ctg x на промежутке принимает все числовые значения из промежутка. Область ее значений совпадает с множеством всех действительных чисел. В промежутке функция y = ctg x непрерывна и монотонно возрастает. Значит, на этом промежутке определена функция, обратная функции y = ctg x. Функцию, обратную котангенсу, называют арккотангенсом и обозначают y = arcctg x .

Арккотангенсом числа а называют угол, принадлежащий промежутку, котангенс которого равен а.

Таким образом, аrcctg a есть угол, удовлетворяющий следующим условиям: ctg (arcctg a)=a и 0 ? arcctg a ? р.

Из определения обратной функции и определения арктангенса следует, что D (arcctg x) = , E (arcctg x) = . Арккотангенс является убывающей функцией, поскольку функция y = ctg x убывает в промежутке.

График функции y = arcctg x не пересекает ось Ох, так как y > 0 R. При х = 0 y = arcctg 0 =.

График функции y = arcctg x изображен на рисунке 11.

Рис. 11

Отметим, что для всех действительных значений х верно тождество: arcctg(-x) = р-arcctg x.

Уроки 32-33. Обратные тригонометрические функции

09.07.2015 8495 0

Цель: рассмотреть обратные тригонометрические функции, их использование для записи решений тригонометрических уравнений.

I. Сообщение темы и цели уроков

II. Изучение нового материала

1. Обратные тригонометрические функции

Рассмотрение этой темы начнем со следующего примера.

Пример 1

Решим уравнение: a ) sin x = 1/2; б) sin x = а.

а) На оси ординат отложим значение 1/2 и построим углы x 1 и х2, для которых sin x = 1/2. При этом х1 + х2 = π, откуда х2 = π – x 1 . По таблице значений тригонометрических функций найдем величину х1 = π/6, тогда Учтем периодичность функции синуса и запишем решения данного уравнения: где k ∈ Z .

б) Очевидно, что алгоритм решения уравнения sin х = а такой же, как и в предыдущем пункте. Разумеется, теперь по оси ординат откладывается величина а. Возникает необходимость каким-то образом обозначить угол х1. Условились такой угол обозначать символом arcsin а. Тогда решения данного уравнения можно записать в виде Эти две формулы можно объединить в одну: при этом

Аналогичным образом вводятся и остальные обратные тригонометрические функции.

Очень часто бывает необходимо определить величину угла по известному значению его тригонометрической функции. Такая задача является многозначной - существует бесчисленное множество углов, тригонометрические функции которых равны одному и тому же значению. Поэтому, исходя из монотонности тригонометрических функций, для однозначного определения углов вводят следующие обратные тригонометрические функции.

Арксинус числа a (arcsin , синус которого равен а, т. е.

Арккосинус числа a (arccos а) - такой угол а из промежутка , косинус которого равен а, т. е.

Арктангенс числа a (arctg а) - такой угол а из промежутка тангенс которого равен а, т. е. tg а = а.

Арккотангенс числа a (arcctg а) - такой угол а из промежутка (0; π), котангенс которого равен а, т. е. ctg а = а.

Пример 2

Найдем:

Учитывая определения обратных тригонометрических функций получим:


Пример 3

Вычислим

Пусть угол а = arcsin 3/5, тогда по определению sin a = 3/5 и . Следовательно, надо найти cos а. Используя основное тригонометрическое тождество, получим: Учтено, что и cos a ≥ 0. Итак,

Свойства функции

Функция

у = arcsin х

у = arccos х

у = arctg х

у = arcctg х

Область определения

х ∈ [-1; 1]

х ∈ [-1; 1]

х ∈ (-∞; +∞)

х ∈ (-∞ +∞)

Область значений

y ∈ [ -π/2 ; π /2 ]

y ∈

y ∈ (-π/2 ; π /2 )

y ∈ (0; π)

Четность

Нечетная

Ни четная, ни нечетная

Нечетная

Ни четная, ни нечетная

Нули функции (y = 0)

При х = 0

При х = 1

При х = 0

у ≠ 0

Промежутки знакопостоянства

у > 0 при х ∈ (0; 1],

у < 0 при х ∈ [-1; 0)

у > 0 при х ∈ [-1; 1)

у > 0 при х ∈ (0; +∞),

у < 0 при х ∈ (-∞; 0)

у > 0 при x ∈ (-∞; +∞)

Монотонность

Возрастает

Убывает

Возрастает

Убывает

Связь с тригонометрической функцией

sin у = х

cos у = х

tg у = х

ctg у = х

График



Приведем еще ряд типичных примеров, связанных с определениями и основными свойствами обратных тригонометрических функций.

Пример 4

Найдем область определения функции

Для того чтобы функция у была определена, необходимо выполнение неравенства которое эквивалентно системе неравенств Решением первого неравенства является промежуток х (-∞; +∞), второго - Этот промежуток и является решением системы неравенств, а следовательно, и областью определения функции

Пример 5

Найдем область изменения функции

Рассмотрим поведение функции z = 2х - х2 (см. рисунок).

Видно, что z ∈ (-∞; 1]. Учитывая, что аргумент z функции арккотангенса меняется в указанных пределах, из данных таблицы получим, что Таким образом, область изменения

Пример 6

Докажем, что функция у = arctg х нечетная. Пусть Тогда tg а = -х или х = - tg а = tg (- a ), причем Следовательно, - a = arctg х или а = - arctg х. Таким образом, видим, что т. е. у(х) - функция нечетная.

Пример 7

Выразим через все обратные тригонометрические функции

Пусть Очевидно, что Тогда Так как

Введем угол Так как то

Аналогично поэтому и

Итак,

Пример 8

Построим график функции у = cos (arcsin х).

Обозначим а = arcsin x , тогда Учтем, что х = sin а и у = cos а, т. е. x 2 + у2 = 1, и ограничения на х (х [-1; 1]) и у (у ≥ 0). Тогда графиком функции у = cos (arcsin х) является полуокружность.

Пример 9

Построим график функции у = arccos (cos x ).

Так как функция cos х изменяется на отрезке [-1; 1], то функция у определена на всей числовой оси и изменяется на отрезке . Будем иметь в виду, что у = arccos (cos x ) = х на отрезке ; функция у является четной и периодической с периодом 2π. Учитывая, что этими свойствами обладает функция cos x , теперь легко построить график.


Отметим некоторые полезные равенства:

Пример 10

Найдем наименьшее и наибольшее значения функции Обозначим тогда Получим функцию Эта функция имеет минимум в точке z = π/4, и он равен Наибольшее значение функции достигается в точке z = -π/2, и оно равно Таким образом, и

Пример 11

Решим уравнение

Учтем, что Тогда уравнение имеет вид: или откуда По определению арктангенса получим:

2. Решение простейших тригонометрических уравнений

Аналогично примеру 1 можно получить решения простейших тригонометрических уравнений.

Уравнение

Решение

tgx = а

ctg х = а

Пример 12

Решим уравнение

Так как функция синус нечетная, то запишем уравнение в виде Решения этого уравнения: откуда находим

Пример 13

Решим уравнение

По приведенной формуле запишем решения уравнения: и найдем

Заметим, что в частных случаях (а = 0; ±1) при решении уравнений sin х = а и cos х = а проще и удобнее использовать не общие формулы, а записывать решения на основании единичной окружности:

для уравнения sin х = 1 решения

для уравнения sin х = 0 решения х = π k ;

для уравнения sin х = -1 решения

для уравнения cos х = 1 решения х = 2π k ;

для уравнения cos х = 0 решения

для уравнения cos х = -1 решения

Пример 14

Решим уравнение

Так как в данном примере имеется частный случай уравнения, то по соответствующей формуле запишем решение: откуда найдем

III. Контрольные вопросы (фронтальный опрос)

1. Дайте определение и перечислите основные свойства обратных тригонометрических функций.

2. Приведите графики обратных тригонометрических функций.

3. Решение простейших тригонометрических уравнений.

IV. Задание на уроках

§ 15, № 3 (а, б); 4 (в, г); 7 (а); 8 (а); 12 (б); 13 (а); 15 (в); 16 (а); 18 (а, б); 19 (в); 21;

§ 16, № 4 (а, б); 7 (а); 8 (б); 16 (а, б); 18 (а); 19 (в, г);

§ 17, № 3 (а, б); 4 (в, г); 5 (а, б); 7 (в, г); 9 (б); 10 (а, в).

V. Задание на дом

§ 15, № 3 (в, г); 4 (а, б); 7 (в); 8 (б); 12 (а); 13 (б); 15 (г); 16 (б); 18 (в, г); 19 (г); 22;

§ 16, № 4 (в, г); 7 (б); 8 (а); 16 (в, г); 18 (б); 19 (а, б);

§ 17, № 3 (в, г); 4 (а, б); 5 (в, г); 7 (а, б); 9 (г); 10 (б, г).

VI. Творческие задания

1. Найдите область определения функции:


Ответы :

2. Найдите область значений функции:

Ответы:

3. Постройте график функции:


VII. Подведение итогов уроков

Задания, связанные с обратными тригонометрическими функциями, часто предлагаются на школьных выпускных экзаменах и на вступительных экзаменах в некоторых ВУЗах. Подробное изучение этой темы может быть достигнуто только на факультативных занятиях или на элективных курсах. Предлагаемый курс призван как можно полнее развить способности каждого ученика, повысить его математическую подготовку.

Курс рассчитан на 10 часов:

1.Функции arcsin x, arccos x, arctg x, arcctg x (4 ч.).

2.Операции над обратными тригонометрическими функциями (4 ч.).

3.Обратные тригонометрические операции над тригонометрическими функциями (2 ч.).

Урок 1 (2 ч.) Тема: Функции y = arcsin x, y = arccos x, y = arctg x, y = arcctg x.

Цель: полное освещение данного вопроса.

1.Функция y = arcsin х.

а) Для функции y = sin x на отрезке существует обратная (однозначная) функция, которую условились называть арксинусом и обозначать так: y = arcsin x. График обратной функции симметричен с графиком основной функции относительно биссектрисы I - III координатных углов.

Свойства функции y = arcsin x .

1)Область определения: отрезок [-1; 1];

2)Область изменения: отрезок ;

3)Функция y = arcsin x нечетная: arcsin (-x) = - arcsin x;

4)Функция y = arcsin x монотонно возрастающая;

5)График пересекает оси Ох, Оу в начале координат.

Пример 1. Найти a = arcsin . Данный пример подробно можно сформулировать так: найти такой аргумент a , лежащий в пределах от до , синус которого равен .

Решение. Существует бесчисленное множество аргументов, синус которых равен , например: и т.д. Но нас интересует только тот аргумент, который находится на отрезке . Таким аргументом будет . Итак, .

Пример 2. Найти .Решение. Рассуждая так же, как и в примере 1, получим .

б) устные упражнения. Найти: arcsin 1, arcsin (-1), arcsin , arcsin (), arcsin , arcsin (), arcsin , arcsin (), arcsin 0. Образец ответа: , т.к. . Имеют ли смысл выражения: ; arcsin 1,5; ?

в) Расположите в порядке возрастания: arcsin, arcsin (-0,3), arcsin 0,9.

II. Функции y = arccos x, y = arctg x, y = arcctg x (аналогично).

Урок 2 (2 ч) Тема: Обратные тригонометрические функции, их графики.

Цель: на данном уроке необходимо отработать навыки в определении значений тригонометрических функций, в построении графиков обратных тригонометрических функций с использованием Д (у), Е (у) и необходимых преобразований.

На данном уроке выполнить упражнения, включающие нахождение области определения, области значения функций типа: y = arcsin , y = arccos (x-2), y = arctg (tg x), y = arccos .

Следует построить графики функций: а) y = arcsin 2x; б) y = 2 arcsin 2x; в) y = arcsin ;

г) y = arcsin ; д) y = arcsin ; е) y = arcsin ; ж) y = | arcsin | .

Пример. Построим график y = arccos

В домашнее задание можно включить следующие упражнения: построить графики функций: y = arccos , y = 2 arcctg x, y = arccos | x | .

Графики обратных функций

Урок № 3 (2 ч.) Тема:

Операции над обратными тригонометрическими функциями.

Цель: расширить математические познания (это важно для поступающих на специальности с повышенными требованиями к математической подготовке) путем введения основных соотношений для обратных тригонометрических функций.

Материал для урока.

Некоторые простейшие тригонометрические операции над обратными тригонометрическими функциями: sin (arcsin x) = x , i xi ? 1; cos (arсcos x) = x , i xi ? 1; tg (arctg x)= x , x I R; ctg (arcctg x) = x , x I R.

Упражнения.

а) tg (1,5 + arctg 5) = - ctg (arctg 5) = .

ctg (arctg x) = ; tg (arcctg x) = .

б) cos ( + arcsin 0,6) = - cos (arcsin 0,6). Пусть arcsin 0,6 = a , sin a = 0,6;

cos (arcsin x) = ; sin (arccos x) = .

Замечание: берем перед корнем знак “+” потому, что a = arcsin x удовлетворяет .

в) sin (1,5 + arcsin ).Ответ: ;

г) ctg ( + arctg 3).Ответ: ;

д) tg ( – arcctg 4).Ответ: .

е) cos (0,5 + arccos ) . Ответ: .

Вычислить:

a) sin (2 arctg 5) .

Пусть arctg 5 = a , тогда sin 2 a = или sin (2 arctg 5) = ;

б) cos ( + 2 arcsin 0,8).Ответ: 0,28.

в) arctg + arctg .

Пусть a = arctg , b = arctg ,

тогда tg (a + b) = .

г) sin (arcsin + arcsin ).

д) Доказать, что для всех x I [-1; 1] верно arcsin x + arccos x = .

Доказательство:

arcsin x = – arccos x

sin (arcsin x) = sin ( – arccos x)

x = cos (arccos x)

Для самостоятельного решения: sin (arccos ), cos (arcsin ) , cos (arcsin ()), sin (arctg (- 3)), tg (arccos ) , ctg (arccos ).

Для домашнего решения: 1) sin (arcsin 0,6 + arctg 0); 2) arcsin + arcsin ; 3) ctg ( – arccos 0,6); 4) cos (2 arcctg 5) ; 5) sin (1,5 – arcsin 0,8); 6) arctg 0,5 – arctg 3.

Урок № 4 (2ч.) Тема: Операции над обратными тригонометрическими функциями.

Цель: на данном уроке показать использование соотношений в преобразовании более сложных выражений.

Материал для урока.

УСТНО:

а) sin (arccos 0,6), cos (arcsin 0,8);

б) tg (arcсtg 5), ctg (arctg 5);

в) sin (arctg -3), cos (arcсtg());

г) tg (arccos ), ctg (arccos()).

ПИСЬМЕННО:

1) cos (arcsin + arcsin + arcsin ).

2) cos (arctg 5–arccos 0,8) = cos (arctg 5) cos (arccos 0,8) + sin (arctg 5) sin (arccos 0,8) =

3) tg ( - arcsin 0,6) = - tg (arcsin 0,6) =

4)

Самостоятельная работа поможет выявить уровень усвоения материала

1) tg (arctg 2 – arctg )

2) cos( - arctg2)

3) arcsin + arccos

1) cos (arcsin + arcsin )

2) sin (1,5 - arctg 3)

3) arcctg3 – arctg 2

Для домашнего задания можно предложить:

1) ctg (arctg + arctg + arctg ); 2) sin 2 (arctg 2 – arcctg ()); 3) sin (2 arctg + tg ( arcsin )); 4) sin (2 arctg ); 5) tg ( (arcsin ))

Урок № 5 (2ч) Тема: Обратные тригонометрические операции над тригонометрическими функциями.

Цель: сформировать представление учащихся об обратных тригонометрических операциях над тригонометрическими функциями, основное внимание уделить повышению осмысленности изучаемой теории.

При изучении данной темы предполагается ограничение объема теоретического материала, подлежащего запоминанию.

Материал для урока:

Изучение нового материала можно начать с исследования функции y = arcsin (sin x) и построения ее графика.

3. Каждому x I R ставится в соответствие y I , т.е. <= y <= такое, что sin y = sin x.

4. Функция нечетна: sin(-x) = - sin x ; arcsin(sin(-x)) = - arcsin(sin x).

6. График y = arcsin (sin x) на :

a) 0 <= x <= имеем y = arcsin(sin x) = x, ибо sin y = sin x и <= y <= .

б) <= x <= получим y = arcsin (sin x) = arcsin ( - x) = - x, ибо

sin y = sin ( – x) = sinx , 0 <= - x <= .

Итак,

Построив y = arcsin (sin x) на , продолжим симметрично относительно начала координат на [- ; 0], учитывая нечетность этой функции. Используя периодичность, продолжим на всю числовую ось.

Затем записать некоторые соотношения: arcsin (sin a) = a , если <= a <= ; arccos (cos a ) = a , если 0 <= a <= ; arctg (tg a) = a , если < a < ; arcctg (ctg a) = a , если 0 < a < .

И выполнить следующие упражнения:a) arccos(sin 2).Ответ: 2 - ; б) arcsin (cos 0,6).Ответ: - 0,1 ; в) arctg (tg 2).Ответ: 2 - ;

г) arcctg(tg 0,6).Ответ: 0,9 ; д) arccos (cos ( - 2)).Ответ:2 - ; е) аrcsin (sin ( - 0,6)). Ответ: - 0,6; ж) аrctg (tg 2) = arctg (tg (2 - )). Ответ:2 - ; з) аrcctg (tg 0,6). Ответ: - 0,6; - arctg x; д) arccos + arccos