Развитие научных знаний древнего востока. Реферат: Развитие научных знаний Древнего Египта Из поучений Нового царства можно назвать «Поучение Ани» и «Поучение Аменемо-пе» с подробным изложением правил житейской морали и традиционной нравственности

1. Проблема возникновения науки.

2. Научные знания на Древнем Востоке

3. Становление науки и научные достижения античной эпохи

Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникно­вения науки.

Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесе­ние генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.

Современное науковедение пока не дает однозначного от­вета на этот вопрос, так как рассматривает саму науку в не­скольких аспектах. Согласно основным точкам зрения наука - это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт; непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизвод­ства кадров. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

Наука как система подготовки кадров существует с сере­дины XIX в.;

Как непосредственная производительная сила - со второй половины XXвв

Как социальный институт - в Новое время;

- как форма общественного сознания - в Древней Греции;

Как знания и деятельность по производству этих знаний - с начала человеческой культуры.

Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время - современное естествознание, в XIX в. появляется обществознание.

Для того чтобы понять этот процесс, нам следует обра­титься к истории.

Наука - это сложное многогранное общественное явле­ние: вне общества наука не может ни возникнуть, ни разви­ваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий соци­альный запрос на объективные знания; социальная возмож­ность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение тру­да внутри этой группы; накопление знаний, навыков, позна­вательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных обще­значимых истин науки.



Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.

Чтобы доказать это, необходимо соотнести критерии науч­ности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним крите­рии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организации, координирующих иссле­дования, а также наличие необходимых материалов, техноло­гий, средств фиксации информации; теоретичность - по­стижение истины ради самой истины, рациональность, системность.

Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры.

2.Начиная со IV по IIтыс. до н.э., на Востоке возникают четыре центра цивилизации: междуречье Тигра и Евфрата, долины Нила, Инда и Хуанхэ. В истории развития этих государств, технике, которая там применялась, немало общего.

Древнейшая в мире цивилизация зародилась в Южной Месопотамии, в междуречье Тигра и Евфрата, она называлась Шумер. В IV тыс. до н.э. здесь возникли земледельческие поселения, были построены ирригационные каналы и другие оросительные сооружения. Ирригация привела к росту населения, и скоро на берегах Тигра и Евфрата появились первые города-государства, с общей культурой: Ур, Урук, Умма, Эриду, Киш, Ниппур, Ларса, Лагаш.

С помощью простейших инструментов шумеры построили каналы, которые образовали огромную ирригационную систему. Поливное земледелие способствовало повышению урожайности и росту населения. Наравне с земледелием важнейшим занятием стало ремесло. Из местного сырья была лишь глина, тростник, асфальт, шерсть, кожа и лен. Среди наиболее значимых изобретений было колесо, которое появилось 5 тыс. лет назад. Колесо было самым великим открытием в истории, так как это было принципиально новое изобретение. На основе колеса появился гончарный круг, достигает расцвета керамическое производство. Гончарные сосуды становятся предметом экспорта. Обмен достижениями с другими государствами способствовал тому, что гончарный круг, колесо и ткацкий станок появились в других цивилизациях, например, в Египте. Позднее в Месопотамии было изобретено стекло.



Металлообработка в Междуречье появилась раньше, чем в других цивилизациях, в VI тыс. до н.э. Строительная техника Междуречья отличалась своеобразием, так как нехватка леса и камня и сухой климат способствовал использованию сырцового кирпича. Из него строили дома, крепостные стены, храмовые башни-зиккураты. Обожженный керамический кирпич из-за дороговизны использовался для облицовки. Среди памятников архитектуры Междуречья – Висячие сады Семирамиды, Вавилонская башня и крепостные стены Вавилона с воротами, посвященными богине Иштар.

Египетская цивилизация также возникла на основе ирригационного земледелия, сочетавшегося с животноводством и ремеслом. Произошел переход к высокоурожайному поливному земледелию, вызвавшему выделение ремесла в самостоятельную отрасль. Образование государства и становление царской власти позволили сконцентрировать усилия многих египтян на строительстве огромных и сложных сооружений хозяйственного и культового значения.

Специфика расположения Древнего Египта в том, что обитаемая территория располагалась в узкой долине Нила, которая орошалась естественным разливом реки. Появление в Египте колодезного журавля, «шадуфа», позволило поднимать воду на «высокие поля», удаленные от русла реки, что в 10 раз увеличило площадь обрабатываемых земель.

Металлообработку в Египте освоили в IV тысячелетии до н.э. Сначала египтяне выплавляли медь, а в III тысячелетии – бронзу с повышенным содержанием никеля. Вскоре они освоили «классическую бронзу» сплав меди с оловом. Египтяне знали еще золото, серебро, свинец.

Среди оригинальных изобретений египетских ремесленников были фаянс и глазурь. Важным достижением стало изобретение пастового стекла. По всему древнему миру славились египетские фаянсовые бусы, покрытые глазурями. Отдельным ремеслом было изготовление папируса.

Архитектура и строительное дело египтян имело отличия от Междуречья. Из камня строились только храмы и погребальные сооружения, в первую очередь пирамиды. Самыми яркими сооружениями Древнего Египта являются пирамиды, Сфинкс, храмы Луксор и Карнак, скальный храм Рамсеса в Абу-Симбеле. Пирамида Хеопса имеет высоту 146 м и состоит из 2,3 млн. каменных блоков, каждый весом около 2 т. Дошедшие до нас памятники египетского зодчества демонстрируют высочайшее мастерство камнетесов и строителей.

Третьим центром ранней цивилизации стала долина реки Инд на северо-западе полуострова Индостан, где располагалась одна из наименее изученных цивилизаций Древнего Востока. Эту цивилизацию называют также цивилизацией Мохенджо-Даро или Хараппской. Здесь, как и в Египте и Междуречье, сложилось государственное образование, в основе экономики которого было ирригационное земледелие и скотоводство. Новациями в сельском хозяйстве были культивированные рис и хлопок, которые в Индской цивилизации появились раньше, чем в других районах Древнего Востока. Местные жители впервые стали одомашнивать кур. Известно об использовании здесь водочерпального колеса, но о существовании крупных оросительных сооружений данных нет.

Индская цивилизация была знакома с гончарным кругом, а керамические строительные материалы получили широкое распространение. Прочти все постройки были из обожженного кирпича, водопроводные и канализационные трубы были керамическими, полы в домах, дворах и даже улицы мостились керамическими плитами на илистом или асфальтовом растворе. Металлообработка началась раньше, чем в Египте, в IV тыс. до н.э. здесь научились выплавлять бронзу. Из меди и бронзы делали орудия труда, инструменты, утварь, статуэтки, украшения. Были известны плавка и пайка меди и ее сплавов.Хлопководство давало сырье для производства хлопковых тканей, которые шли на экспорт.

Китайская цивилизация начала складываться воIIтыс. до н.э. Особенностью китайской культуры было то, что сложилась самобытная цивилизация, не имевшая контакта с другими государствами Древнего Востока. Предпосылками возникновения государства стало развитие земледельческой экономики, но распространение металлических орудий здесь тормозилось. Специфика Китая проявилась в освоении некоторых сельскохозяйственных культур, здесь впервые начали выращивать чай, культивировать тутовые и лаковые деревья.

В Китае были освоены технологии, долгое время не известные Западу: шелк, бумага, фарфор. Китайцы самостоятельно совершили ряд открытий: изобрели колесо, гончарный круг, освоили технологию плавки меди, олова, получения сплава бронзы, узнали токарный и ткацкий станки. Другими сферами китайской изобретательской мысли была техника использования нефти и природного газа. Для этих целей строились деревянные резервуары для хранения этого сырья и делались бамбуковые газопроводы. Китайцы изобрели компас, взрывчатые и пороховые смеси, которые использовались для фейерверков.

Своим появлением наука обязана практическим потребностям, с которыми столкнулись ранние цивилизации. Необходимость планировки и строительства ирригационных, общественных и погребальных сооружений, определение сроков сбора и посева урожая, вычисление объема налогов и учет расходов государственного аппарата вызвал к жизни на Древнем Востоке отрасль деятельности, которую можно назвать сферой науки и образования. Наука была тесно связана с религией, а научными и образовательными центрами были храмы.

Одним из важнейших признаков цивилизации была письменность. Это качественный скачок в развитии средств накопления и передачи информации, явившийся следствием социально-экономического и культурного развития. Она появилась тогда, когда объем знаний, накопленных обществом, превысил уровень, при котором они могли передаваться только устно. Все дальнейшее развитие человечества связано с закреплением в письменности накопленных научных и культурных ценностей.

Сначала для фиксации информации использовали значки-идеограммы, потом стилизованные рисунки. Позднее складывается несколько видов письменности, и только на рубеже II-Iтыс. до н.э. финикийцы создали на основе клинописи алфавит из 22 букв, с помощью которого было создано большинство современных письменностей. Но не до всех частей древнего мира он дошел, и Китай, например, до сих пор использует иероглифическую письменность.

Древнее письмо Египта появилось в конце IV тыс. до н.э. в виде идеограмм-иероглифов. Хотя египетская письменность постоянно модифицировалась, она до конца сохраняла иероглифическую структуру.В Междуречье сложилась своя форма письменности, называемая клинописью, так как идеограммы здесь не писались, а оттискивались на плитке из сырой глины острым инструментом. В Древнем Китае первыми формами письма были иероглифы, которых сначала было около 500, а позднее их число превысило 3000. Их неоднократно пытались унифицировать и упрощать.

Для Древнего Востока характерно развитие многих отраслей науки: астрономии, медицины, математики. Астрономия была необходима всем земледельческим народам, а ее достижениями стали позднее пользоваться моряки, военные и строители. Учеными или жрецами предсказывались солнечные и лунные затмения. В Междуречье был выработан солнечно-лунный календарь, но египетский календарь оказался точнее. В Китае наблюдали за звездным небом, строились обсерватории. По китайскому календарю год состоял из 12 месяцев; дополнительный месяц добавлялся в високосном году, который устанавливался один раз в три года.

Древние врачи владели различными методами диагностики, практиковалась полевая хирургия, составлялись руководства для врачей, использовались медицинские препараты из трав, минералов, ингредиентов животного происхождения и т. д. Древневосточные врачи применяли массаж, перевязки, гимнастику. Особенно славились медики египтян, которые освоили хирургические операции, лечение глазных болезней. Именно в Древнем Египте возникла медицина в современном понимании.

Уникальными были математические познания. Математика появились раньше письменности. Система счета была везде различной. В Месопотамии существовала позиционная система цифр и шестидесятеричный счет. От этой системы ведет свое начало деление часа на 60 минут, а минуты на 60 секунд и т.д. Египетские математики оперировали не только четырьмя действиями арифметики, но умели возводить числа во вторую и третью степень, вычислять прогрессии, решать линейные уравнения с одним неизвестным и т.д. Больших успехов они достигли в геометрии, вычисляя площадь треугольников, четырехугольников, круга, объемы параллелепипедов, цилиндров и неправильной пирамиды. У египтян была десятичная система счета, такая же, как и везде сейчас. Важный вклад в мировую науку внесли древнеиндийские математики, создав десятичную позиционную систему счета с применением нуля (который у индийцев обозначал «пустоту»), принятую в настоящее время. Получившие распространение «арабские» цифры в действительности заимствованы у индийцев. Сами арабы называли эти цифры «индийскими».

В числе других наук, зародившихся на Древнем Востоке можно назвать философию, первым философом считается Лао-цзы (VI–V вв. до н.э.).

Многие достижения древневосточных цивилизаций вошли в арсенал европейской культуры и науки. В основе греко-римского (юлианского) календаря, которым мы пользуемся сегодня, лежит египетский календарь. В основе европейской медицины лежит древнеегипетская и вавилонская медицина. Успехи древних ученых были невозможны без соответствующих достижений в астрономии, математике, физике, химии, медицине и хирургии.

Ближний Восток был родиной многих машин и инструментов, здесь созданы: колесо, плуг, ручная мельница, прессы для выдавливания масла и сока, ткацкий станок, грузоподъемные механизмы, выплавка металла и т.д. Развитие ремесла и торговли привело к образованию городов, а превращение войны в источник постоянного притока рабов повлияло на развитие военного дела и вооружения. Крупнейшим достижением периода является освоение способов выплавки железа. Впервые в истории начали строиться ирригационные сооружения, дороги, водопроводы, мосты, крепостные сооружения и корабли.

Практические навыки и потребности производства стимулировали развитие научных знаний, так как для решения вопросов, связанных со строительством, перемещением больших грузов и т.д. требовались математические расчеты, чертежи и знания свойств материалов. Развитие получили в первую очередь естественные науки, так как они востребованы необходимостью решения задач, выдвигаемых практикой. Основным методом древневосточной науки были умозрительные заключения, не предполагавшие проверки опытом. Накопленные знания и научные открытия заложили основы дальнейшего развития науки.

3. Античностью или античной цивилизацией называют период истории с XII в. до н.э. по 476 г. н.э. В основном под античной цивилизацией понимаются Древняя Греция и Рим. Особенностью античной цивилизации было широчайшее применение рабского труда, что создавало условия для развития науки, искусства и общественной жизни, зато тормозило развитие технических приспособлений и устройств. Дешевая рабочая сила рабов заменяла большинство механизмов и провоцировала застой в технике. Фактически только одна отрасль развивалась и совершенствовалась – военная техника. В течение все античной цивилизации война была непременным явлением жизни античного общества. Войны велись постоянно: ради захвата добычи, новых территорий, а главное – рабов, основы производства Древней Греции и Древнего Рима.

Древняя Греция стала преемницей ранних культур, поэтому многое из технических достижений и изобретений было заимствованно из Египта, Малой Азии. Античная цивилизация существовала в условиях классического рабства, когда раб был основным работником, превращенным в говорящее орудие труда.

Набор машин античности ограничен: водоподъемные механизмы; деревянное водоподъемное колесо, которое вращается с помощью рабов; водоотливное приспособление с «архимедовым винтом», вращаемое рабом. Подъемные машины триспасты применялись в строительстве. Античная цивилизация знала водяную мельницу, но она не получила распространения. Основой античной «энергетики» являлась мускульная сила рабов и тягловая сила животных, с их использованием приводилась в действие механизация Древней Греции и Рима: жернова мельниц и масличных прессов, водоподъемные колеса, колеса для подъема тяжестей и т.д. Исключение составляли военные машины.

Рабский труд и незаинтересованность подневольных работников в результатах труда препятствовали внедрению новых технологий. В таких условиях возможность применения совершенных орудий труда и достижений в области агрономических наук исключалась.

Некоторый прогресс происходил там, где нельзя было применить рабов или возникала потребность в более качественных технологиях. Среди примеров: изобретение и использование муфельных печей, стрижку овец, гончарные горны, обрушение породы и подъемные ручные вороты в горном деле и т.д.

Определенный прогресс отмечается в области литья из меди, бронзы и медных сплавов. При отливке больших статуй был изобретен способ полого литья по восковым моделям. Среди примечательных достижений античности – статуя бога Гелиоса на острове Родос, «Колосс Родосский» III в. до н.э., вошедшая в список семи чудес света. Его высота достигала около 35-38 м.

Античные мастера смогли разработать и на практике применить множество новаций, обоснованных и вычисленных с помощью научных познаний. Для примера достаточно вспомнить сооружения из списка семи чудес света: Александрийский маяк, храм Артемиды в городе Эфес. А водопровод на острове Самос проходил через горный массив, вода текла по километровому искусственному тоннелю, прорубленному сквозь толщу скалы.

Греки создали основные принципы классической архитектуры. Это создание архитектурных ордеров (ионический, дорический, коринфский), как особой организации соотношения несущих и несомых частей здания в балочно-стоечной конструкции. Римляне предпочитали коринфский, тосканский и композитный ордера. Другими достижениями греков было формирование архитектурных стилей, строительство сооружений без связующего материала, новые виды общественных зданий – театр, стадион, ипподром, библиотека, гимнасий, маяк и т.д. Новым словом в градостроительстве было использование регулярной планировки (шахматной), разработанной Гипподамом Милетским.

Ордерная система позволяла придать особую выразительность различным элементам здания. Так сложился единый общегреческий тип храмового здания в форме прямоугольной постройки, со всех сторон обнесенной колоннами. Примером дорической постройки был храм Аполлона в Коринфе, а ионической – храм Артемиды в Эфесе. Знаменитый афинский Парфенон сочетал дорический и ионический стили.

Оригинальным зданием был Александрийский маяк на о. Фарос. Он представлял собой трехступенчатую башню высотой 120 м, внутри которой был спиральный пандус, по которому наверх завозили на ослах горючие материалы. На вершине находился фонарь, где с наступлением темноты разжигался огонь.

Римляне вошли в историю как выдающиеся строители. Основные римские новшества в строительном деле: широкое применение бетона, обожженного кирпича, известкового раствора и сводчатых перекрытий. Вершиной камнетесного дела было сооружение арки и полуциркульного свода из клинчатых каменных блоков, уложенных насухо. В III в. до н.э. в строительной технике римлян было сделано важное открытие – применение пуццоланового раствора, изготовлявшегося из измельченной породы вулканического происхождения. На этом растворе изготовлялся римский бетон. Римляне научились использовать опалубку и строить бетонные сооружения, а в качестве наполнителя использовать щебень. Во II в. н.э. в Риме был построен Пантеон, «Храм всех богов», с литым бетонным куполом диаметром 43 м, он считался самым крупным в мире. Это сооружение стало образцом для архитекторов Нового времени.

Римляне заимствовали многие достижения у своих предшественников-этрусков. Этруски считались отличными металлургами, строителями, мореходами. В число таких приобретений вошли основные виды сооружений, создавших славу римским строителям. Римляне развили идеи этрусков и достигли в них максимальных успехов. Это акведуки и дороги, клоаки и триумфальные арки, форумы и амфитеатры, ирригация болотистой местности, каноны в архитектуре и скульптурном портрете.

Главенствующий принцип целесообразности, практичность и утилитарность отчетливо проявлялись в римской архитектуре. Этрусские традиции в архитектуре и изобретение бетона позволяли римлянам перейти от простых балочных перекрытий к аркам, сводам и куполам. Бурное строительство городов Римского государства, мощный приток и скопление населения в них, густая застройка улиц – все это вынудило городские власти ввести новые принципы градостроительства и позаботиться об элементарных удобствах и развлечениях обитателей Рима. К ним относятся амфитеатры, цирки, стадионы, термы (общественные бани), дворцы императоров и знати. В Риме строили многоквартирные дома – инсулы, которые могли достигать высотой 3-6 и даже 8 этажей.

Для обеспечения водой Рима было построено 11 акведуков-водопроводов, длина некоторых из них достигала 70 км. Ряд арок давал возможность строить многоярусные аркады, внутри которых находились трубы, подающие воду в город. Одним из наиболее оригинальных творений римлян в области общественных зданий были термы – римские бани, которыми пользовались не только с целью гигиены, но и для отдыха, общения. Особенностью терм были керамические трубы для обогревания стен и полов.

Римляне широко использовали цемент и бетон. Из бетона был сооружен фундамент Колизея, крепости, мосты, акведуки, портовые молы, дороги. Колизей стал одним из самых грандиозных сооружений. Здание, предназначенное для гладиаторских боев и травли животных, представляло собой эллипс окружностью 524 м. Стены Колизея имела высоту 50 м и состояли из трех ярусов.

Римские дороги вызывали восхищение у современников и последующих поколений. При их строительстве применялся бетон в сочетании с многоуровневой структурой дорожного полотна. Кроме дорог римляне знамениты своими мостами, среди которых выделяется мост через Дунай, построенный Аполлодором. Знаменитым ученым и инженером римского времени был Витрувий, I в. до н.э. Он написал «Десять книг об архитектуре» труд о строительстве и различных машинах; в этом труде содержится первое описание водяной мельницы.

Среди технических изобретений Древней Греции можно назвать новшества, которые либо опережали свое время, либо не несли практического значения в условиях рабовладения. Хотя многие из них применяются до сих пор. Такими изобретениями были автоматы Герона Александрийского. Разработанные им модели использовали силу водяного пара или сжатого воздуха. Аэропил (геронов паровой шар) является прототипом современной паровой машины. Использовать это изобретение в античной цивилизации было невозможно, поэтому и оно и многие аналогичные оставались просто игрушками. Некоторые творения Герона оказались применимы, например, автомат для продажи товаров, полезным изобретением Герона стал годометр (измеритель пути).

Ремесло и наука состоят в тесной связи, что заметно в появлении прибора, отмеряющего время. В античности были распространены солнечные часы, водяные, песочные. Античные мастера научились делать дорожные солнечные часы, а водяные получили приспособление для выполнения роли будильника.

Достижения Архимеда связаны с нуждами практики. Они использовались в машинной технике того времени, при создании блоков и лебедок, зубчатых передач, ирригационных и военных машин. Архимедом сделаны многочисленные изобретения: архимедов винт - устройство для подъема воды на более высокий уровень; различные системы рычагов, блоков и винтов для поднятия тяжестей.

Техника для войны. Древний мир немыслим без войны. Для ведения войны требовались все более сложные машины. Если говорить о прогрессе технике, то речь пойдет об артиллерии. Среди авторов древней артиллерии наиболее важными являются механики Филон и Герон.

Военными машинами, устроенными по типу лука, были самострелы (аналог арбалета), которые назывались гастрафет. На этой основе были созданы первые образцы более крупных метательных машин катапульты. Они носят различные названия: оксибел (орудие для метания стрел или катапульта) или литобол (орудие для метания каменных ядер или баллиста). Еще более совершенные орудия были придуманы Филоном: халкотон, в котором для натягивания лука использовалась упругость кованых бронзовых пружин; полибол, основанный на использовании упругости при кручении, мог перезаряжаться сам.

Кроме метательных машин, военная техника включала разнообразные приспособления для штурма городов и разрушения крепостных укреплений: осадные башни, тараны, буравы, подвижные галереи, механизированные штурмовые лестницы, подъемные мосты. Для осады крепостей греческий механик Деметрий Полиоркет изобрел большое количество осадных сооружений. Среди них были укрытия от метательных снарядов – черепахи для земляных работ, черепахи с таранами. Значительным сооружением была гелепола – движущаяся башня пирамидальной формы высотой до 35 м на восьми больших колесах.

Греки были морской цивилизацией, главенство их на море обычно связывают с изобретением нового типа боевого корабля – триеры. Большая скорость и маневренность позволяли триере эффективно использовать свое главное оружие – таран, который пробивал днище кораблей противника. Триера позволила грекам завоевать господство на Средиземном море и овладеть морской торговлей. Появление баллисты изменило тактику не только сухопутных битв, но и морских. Если раньше главным оружием триеры был таран, то теперь стали строить корабли с башнями, на которые устанавливали баллисты.

Военным изобретением иного характера стала македонская фаланга. Начиная с отца Александра Македонского, его воины имели длинные копья (до 6 м) и строились плотными рядами, создавая частокол стальных наконечников. Новое построение и тактика привели к великим завоеваниям македонских царей, а с точки зрения истории – к началу новой эпохи эллинизма.

Новый центр античной цивилизации, Древний Рим, начал активную военную экспансию, постоянно модернизируя оружие, тактику, военные приспособления. В итоге, римляне создали лучшую армию Древнего Мира, что породило волну завоеваний и появление «Римского мира» или Римской империи.

В этот период появилось много важных изобретений и открытий, которые применялись в строительстве, мореходстве и быту. Они не носили революционного характера, однако способствовали постепенному развитию материальной и технической мысли человечества. Основные технические достижения античности были сосредоточены на орудиях войны, но и в мирных целях, особенно в сельском хозяйстве было сделано немало открытий.

Достижения античной материальной культуры стали основой технического развития Западной Европы в эпоху средневековья и последующие периоды.

История античной науки условно делится на три периода:

Первый период - ранняя греческая наука, получившая у древних авторов наименованиенауки «о природе» («натурофилософия»). Эта «наука» была нерасчлененной, спекулятивной дисциплиной, основной проблемой которой была проблемапроисхождения и устройства мира, рассматривавшегося как единое целое. До конца V в. до н.э. наука быланеотделима от философии. Высшей точкой развития и завершающей стадией науки «о природе» быланаучно-философская система Аристотеля.

Второй период - эллинистическая наука. Это периоддифференциации наук. Процесс дисциплинарного дробления единой науки начался в V в. до н.э., когда одновременно с разработкойметода дедукции произошло обособление математики. РаботыЕвдокса положили начало научнойастрономии.

В трудах Аристотеля и его учеников уже можно усмотреть появлениелогики, зоологии, эмбриологии, психологии, ботаники, минералогии, географии, музыкальнойакустики, не считаягуманитарных дисциплин, таких какэтика, поэтика и другие, которые не были частью науки «о природе». Позже приобретают самостоятельное значение новые дисциплиныгеометрическая оптика (в частности, катоптрика, т.е. наука о зеркалах),механика (статика и ее приложения),гидростатика. Расцвет эллинистической науки был одной из форм расцвета эллинистической культуры в целом и обусловлен творческими достижениями таких ученых, какЕвклид, Архимед, Эратосфен, Аполлоний Пергский, Гиппарх и др. Именно в III-II вв. до н.э.античная наука по своему духу и устремлениям ближе всего подошла к наукеНового времени.

Третий период - периодупадка античной науки. Хотя к этому времени относятся работыПтолемея, Диофена, Галена и др., все же в первые века н.э. наблюдается усиление регрессивных тенденций, связанных с ростомиррационализма, появлениемоккультных дисциплин, возрождением попытоксинкретичного объединения науки и философии.

Особенностью зарождения и развития античной науки была новая система государственного устройства – афинская демократия. В греческих судах каждый защищал себя сам; на этих процессах истцы и ответчики изощрялись в ораторском искусстве. Этому искусству стали учить в частных школах мудрецы-«софисты». Главой софистов был Протагор; он утверждал, что «человек есть мера всех вещей» и что истина – это то, что кажется большинству (т.е. большинству судей). Ученик Протагора Перикл стал первым политиком, освоившим ораторское искусство; благодаря этому искусству он 30 лет правил Афинами. От софистов и Протагора пошла греческая философия; в значительной степени она сводилась к умозрительным рассуждениям. Тем не менее, в рассуждениях философов встречались и рациональные мысли. Сократ первым поставил вопрос об объективности знания; он подвергал сомнению привычные истины и утверждал: «я знаю только то, что ничего не знаю». Анаксагор пошел дальше – он отрицал существование богов и пытался создать свою картину мира, утверждал, что тела состоят из мельчайших частичек. Демокрит назвал эти частички атомами и попробовал применить бесконечно малые величины в математических вычислениях; он получил формулу для объема конуса. Афиняне были возмущены попытками отрицать богов, Протагор и Анаксагор были изгнаны из Афин, а Сократ по приговору суда был вынужден испить чашу с ядом.

Учеником Сократа был философ Платон (427-347 гг. до н.э.). Платон верил в существование души и в переселение душ после смерти. Платон был основателем социологии, науки об обществе и государстве. Он предложил проект идеального государства, которым управляет каста философов наподобие египетских жрецов. Опорой философов являются воины, «стражи», похожие на спартанцев, они живут одной общиной и имеют все общее – в том числе жен. Платон утверждал, что его идеальное государство существовало в Атлантиде, стране расположенной на Западе, на затонувшем впоследствии материке. Конечно, это была «научная фантастика». Платон и его ученик Дион пытались создать идеальное государства в Сиракузах, на Сицилии; этот политический эксперимент привел к гражданской войне и разорению Сиракуз.

Исследования Платона продолжал Аристотель, он написал трактат «Политика», который содержал сравнительный анализ общественного строя большинства известных тогда государств. Аристотель выдвинул ряд положений, принятых современной социологией; он утверждал, что ведущим фактором общественного развития является рост населения; перенаселение порождает голод, восстания, гражданские войны и установление «тирании». Цель «тиранов» – установление «справедливости» и передел земли. Аристотель известен как основатель биологии; он описывал и систематизировал животных – так же как описывал и систематизировал государства; таких исследователей называют «систематиками».

Александр Македонский проявлял интерес к наукам и помог Аристотелю создать первое высшее учебное заведение, «Ликей»; он взял с собой в поход племянника Аристотеля Каллисфена. Каллисфен описывал природу завоеванных стран, измерял широту местности, посылал Аристотелю чучела животных и гербарии. После смерти Александра роль покровителя наук взял на себя его друг Птолемей. При разделе империи Александра Птолемею достался Египет, и он основал в Александрии по образцу Ликея новый научный центр, Мусей. Здания Мусея располагались среди парка, там были аудитории для студентов, дома преподавателей, обсерватория, ботанический сад, и знаменитая библиотека – в ней насчитывалось 700 тысяч рукописей. Преподаватели Мусея получали жалование; среди них были не только философы и механики, но и поэты, восточные мудрецы, переводившие на греческий язык египетские и вавилонские трактаты. Египетский жрец Манефон был автором трактата «Египетские древности», а вавилонский жрец Бероэс написал «Вавилонские древности»; 72 еврейских мудреца перевели на греческий язык Библию.

Мусей был первым научным центром, финансируемым государством. По сути, день рождения Мусея был днем рождения античной науки. Главой Мусея был географ Эратосфен, сумевший, измеряя широту в различных пунктах, вычислить длину меридиана; таким образом, было доказано, что Земля – шар. Евклид создал геометрию, которую сейчас проходят в школах. Он положил в основу науки строгие доказательства; когда Птолемей попросил обойтись без доказательств, Евклид ответил: «Для царей нет особых путей в математике».

В Мусейоне обсуждалась гипотеза Аристарха Самосского о том, что Земля вращается по окружности вокруг Солнца оказалось, что это противоречит наблюдениям (Земля движется не по кругу, а по эллипсу). В результате ученые во главе с Клавдием Птолемеем (II в. н.э.) создали теорию эпициклов: Земля находится в центре Вселенной, вокруг располагаются прозрачные сферы, объемлющие одна другую; вместе с этими сферами по сложным эпициклам движутся Солнце и планеты. За последней сферой неподвижных звезд Птолемей поместил «жилище блаженных». Труд Птолемея «Великое математическое построение астрономии в 13 книгах» был главным руководством по астрономии до Нового времени. Птолемей создал научную географию и дал координаты 8 тысяч различных географических пунктов, это «Руководство по географии» использовалось европейцами до времен Колумба.

Витрувий в своей работе использовал труды ученых из Александрийского Мусея, который функционировал до конца IV в. н.э. В 391 г. н.э. Мусей был разрушен во время религиозного погрома – христиане обвиняли ученых в поклонении языческим богам.

Христианство претендовало на роль монопольной идеологии, оно боролось с другими религиями и богами, преследуя всякое инакомыслие. Никто не имел права усомниться в том, что написано в Библии: Земля лежит посреди Океана и накрыта как шатром, семью куполами неба, что в центр

Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникновения науки.
Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесение генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.
Современное науковедение пока не дает однозначного ответа на этот вопрос, так как рассматривает саму науку в нескольких аспектах. Согласно основным точкам зрения наука -это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт;
непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизводства кадров. Мы уже называли и довольно подробно говорили об этих сторонах науки. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:
- наука как система подготовки кадров существует с середины XIX в.;
- как непосредственная производительная сила - со второй половины XX в.;
- как социальный институт - в Новое время;
- как форма общественного сознания - в Древней Греции;
- как знания и деятельность по производству этих знаний -с начала человеческой культуры.
Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику. Новое время -современное естествознание, в XIX в. появляется обществознание.
Для того чтобы понять этот процесс, нам следует обратиться к истории.
Наука - это сложное многогранное общественное явление: вне общества наука не может ни возникнуть, ни развиваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий социальный запрос на объективные знания; социальная возможность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение труда внутри этой группы; накопление знаний, навыков, познавательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных общезначимых истин науки.
Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.
Чтобы доказать это, необходимо соотнести критерии научности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним критерии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организации, координирующих исследования, а также наличие необходимых материалов, технологий, средств фиксации информации (1); теоретичность - постижение истины ради самой истины (2); рациональность (3);
системность (4).
Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры.

НАУЧНЫЕ ЗНАНИЯ НА ДРЕВНЕМ ВОСТОКЕ

Если мы рассмотрим науку по критерию (1), то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и ее передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда -стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это - профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.
Лично-именной тип передачи знаний связан с ранними этапами человеческой истории, когда необходимые для жизни сведения передаются каждому человеку через обряды инициации, мифы как описания деяний предков. Так передаются знания-персоналии, являющиеся индивидуальными умениями.
Универсально-понятийный тип трансляции знаний не регламентирует субъекта познания родовыми, профессиональными и прочими рамками, делает знание доступным любому человеку. Этому типу трансляции соответствуют знания-предметы, являющиеся продуктом познавательного освоения субъектом определенного фрагмента реальности, что говорит о появлении науки.
Профессионально-именной тип трансляции знаний характерен для древнеегипетской цивилизации, просуществовавшей четыре тысячи лет почти без изменений. Если там и происходило медленное накопление объема знаний, то совершалось это стихийным образом.
Более динамичной в этом отношении была вавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Именно они создали астрологию, которую считали вполне практическим занятием.
То же самое можно утверждать о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших там важнейшей частью повседневной жизни.
Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность. Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.
Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.
Третьим критерием науки является рациональность. Сегодня нам это кажется тривиальным, но ведь вера в возможности разума появилась далеко не сразу и не везде. Восточная цивилизация так и не приняла этого положения, отдавая предпочтение интуиции и сверхчувственному восприятию. Например, вавилонская астрономия (точнее, астрология), вполне рационалистическая по своим методам, основывалась на вере в иррациональную связь небесных светил и человеческих судеб. Там знание было эзотерическим, предметом поклонения, таинством. Рациональность и в Греции появилась не ранее VI в. до н.э. Науке там предшествовали магия, мифология, вера в сверхъестественное. И переход от мифа к логосу был шагом огромной важности в развитии человеческого мышления и человеческой цивилизации вообще.
Не соответствовали научные знания Древнего Востока и критерию системности. Они были просто набором алгоритмов и правил для решения отдельных задач. И не имеет значения, что некоторые из этих задач были достаточно сложными (например, вавилоняне решали квадратные и кубические алгебраические уравнения). Решение частных задач не выводило древних ученых на общие законы, отсутствовала система доказательств (а греческая математика с самого начала пошла путем строгого доказательства математической теоремы, формулируемой в максимально общей форме), что делало способы их решения профессиональной тайной, сводившей, в конечном счете, знание к магии и фокусам.
Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.

НАЧАЛО НАУКИ. АНТИЧНАЯ НАУКА

Итак, мы приходим к выводу, что появление собственно науки происходит в Древней Греции в VII - VI вв. до н.э. Именно между VI и IV вв. до н.э. в накопленных греками знаниях проявляются те характеристики и свойства, которые позволяют говорить о греческом комплексе знаний о природе как о науке. Среди этих характеристик - деятельность по целенаправленному получению новых знаний, наличие специальных людей и организаций для этого, наличие соответствующих материалов и технологий по получению этого знания. Цель греческой науки - постижение истины из чистого интереса к самой истине. Эта наука - системна и рациональна.
Появление и развитие науки в Древней Греции происходило в контексте всей культуры. Мы уже говорили, что в любой науке, научной теории есть утверждения и допущения, не доказывающиеся в рамках самой теории, но играющие такую важную роль, что их пересмотр или удаление влекут отмену всей теории. Также мы говорили, что каждая научная теория предполагает свой идеал объяснения, доказательства и организации знания, который уходит корнями в культуру своей эпохи. Иначе говоря, все науки и научные теории вырастают на базе определенных научных программ (парадигм). Именно в Греции и появляются первые научные программы, существенно связанные со спецификой древнегреческой цивилизации и культуры.
Причиной того, что наука появилась именно в Древней Греции, стала единственная в своем роде революция, которая произошла там в эпоху архаики и состояла в появлении частной собственности. Весь остальной мир, древнейшие цивилизации Востока демонстрировали так называемый «азиатский способ» производства и соответствующий ему тип государства - восточную деспотию. Командно-административная система (восточная деспотия) абсолютно подавляла и нарождавшуюся частную собственность, и не имевший никаких гарантии восточный рынок, которые целиком зависели от государства и обслуживали его. Властные отношения в таком обществе являются первичными, а отношения собственности - вторичными. Собственностью в таком обществе распоряжается тот, в чьих руках находится власть. Прежде всего - это чиновники разных рангов и, конечно, верховный правитель этого государства.
В таком обществе просто не возникает вопрос о правах человека и необходимости их защиты. Человек здесь находится в полной воле правителя и чиновников, общение с которыми невозможно строить на чисто логических и рациональных отношениях. Отсюда - фатализм, характерный для восточных цивилизаций, а также их остальные специфические черты - отсутствие приоритета личности, отказ от рационального способа познания мира, склонность к мистицизму и эзотеризму.
Совершенно иные отношения возникли в Греции первой трети I тысячелетия до н.э. Там появилась частная собственность, товарное производство, ориентированное на рынок, при отсутствии сильной централизованной власти и самоуправления общин. Там же впервые зародилось рабство, которое стало экономической основой общества, а также первые антагонистические классы.
Господство частной собственности вызвало к жизни свойственные ей политические, правовые и иные институты - систему демократического самоуправления с правом и обязанностью каждого гражданина принимать участие в общественных делах, системы частноправовых гарантий с защитой интересов каждого гражданина, с признанием его личного достоинства, прав и свобод, а также систему социокультурных принципов, способствовавших расцвету личности и появлению гуманистического древнегреческого искусства.
Утверждение общезначимого гражданского права означало секуляризацию общественной жизни, высвобождение ее из-под власти религиозных и мистических представлений. Отношение к закону не как к слепой силе, продиктованной свыше, а как к демократической норме, принятой большинством в процессе всенародного обсуждения, основывалось на риторике, искусстве убеждения и аргументации. Отныне все, входящее в интеллектуальную сферу, подлежало обоснованию, каждый имел право на особое мнение, это приводило к осознанию того факта, что истина - не продукт догматической веры, принимаемый в силу авторитета, а результат рационального доказательства, основанного на аргументах и понимании. Эта линия в вопросах познания (в обыденной жизни присутствовала вера в судьбу) проводилась четко, исключая из рассмотрения все нерациональное.
Так сформировался аппарат логического рационального обоснования, превратившийся в универсальный алгоритм производства знания в целом, в инструмент передачи знания от индивида в общество. Так появилась наука как доказательное знание. Но при этом развитие рабовладения обусловило пренебрежение греков ко всему, связанному с орудийно-практической деятельностью (занятиями, достойными свободного человека, считались политика, война, философия и искусство), сформировало идеологию созерцательности, абстрактно-умозрительного отношения к действительности. Наука -занятие свободного человека, резко разводилась с ремеслом -занятием рабов.
Это был очень важный шаг для становления науки, так как именно отказ от материально-практического отношения к действительности породил идеализацию - непременное условие науки (обобщение принципов орудийно-трудовой деятельности порождает лишь абстрагирование - стандартную гносеологическую процедуру по выделению реально существующих признаков, присущую и высшим животным). Поэтому положения планиметрии Гиппарха, постулаты геометрии Евклида, апории элеатов, диогеновский поиск сущности человека - все это не имеет каких-либо очевидных связей с материальным производством. Практика, обусловливая абстрагирование, препятствует возникновению идеализации как его логического продолжения. Никакому практику никогда не придет в голову заниматься вопросами сущности мира, познания, истины, человека, прекрасного. Все эти радикально «непрактические» вопросы весьма далеки как от сферы массового производства, так и от сознания производителей.
Таким образом, только в Греции возникли такие формы познавательной деятельности (систематическое доказательство, рациональное обоснование, логическая дедукция, идеализация), из которых в дальнейшем могла развиться наука.
Но решительный отказ от практической деятельности имел и обратную сторону - неприятие эксперимента как метода познания, что закрывало дорогу становлению экспериментального естествознания, являющемуся характерной чертой современной науки.
Тем не менее, это уже была наука, имевшая свой предмет, свои методы его изучения, свои способы доказательства, что позволяет говорить о появлении первых научных программ.
Итак, Древняя Греция VII в. до н.э., вернее, греческие колонии Малой Азии. Земледелие перестает быть господствующей отраслью экономики; высокого развития достигают ремесла, мореходство, торговля, денежные отношения; строй рабовладельческой демократии становится господствующим, развертывается борьба партий, прогрессирует право, вводятся письменные законы, складываются гармоничные отношения между обществом и личностью свободнорожденного грека; к руководству поднимаются новые социальные слои; устанавливаются контакты с высококультурными соседями. Важным было также отсутствие у греков касты жрецов, монополизировавшей интеллектуально-духовные функции общества, консервировавшей традиционную культуру.
Указанные особенности греческой культуры отразились в своеобразии структур, ориентаций, преобладающих способов мышления греков. Важнейшим результатом явилась направленность греческой мысли на самостоятельное, объективное рассмотрение природы как реальности, независимой от политических интересов и моральных норм. Греческую мысль отличали стремление к точному познанию действительности, доказательству, критический дух и смелость выводов. Все это в значительной степени объясняет независимость греческой науки и философии от мифологии, из недр которой они вышли. Интересно проследить, как шел процесс отделения объективных эмпирических знаний о мире от их мифологической оболочки, давно получивший в науке название «от мифа к логосу», или более развернуто, «от мифологических представлений к теоретическому мышлению».
В Греции Гомера и Гесиода именно мифология была господствующей формой сознания, хотя, и не в своем первозданном виде. Она уже была преобразована, систематизирована, переосмыслена в эпосе и теогониях. Процесс ее активного преобразования продолжается под действием искусства и элементарных форм научного знания, свойственных той эпохе.
Миф - многослойное и полифункциональное образование. Это обобщенное отражение действительности в фантастическом виде тех или других одушевленных существ. Он резко отличается от понятийного мышления, современного мировоззрения тем, что всегда принимается за правду, как бы ни был неправдоподобен. Мир мифа одновременно связывает человека с двумя мирами - реальным и сакральным (божественным), отчужденным от обыденного мира. Он - одновременно наглядный, чувственно-данный и волшебный, чудесный; индивидуально-чувственный и обобщенный; очевидно-достоверный и сверхъестественный. Главная его функция - регуляция общественной жизни во всем ее многообразии, и он выступает здесь как сама жизнь, где сливаются воедино производственные, социальные, идеологические и даже физиологические аспекты. Иначе говоря, мифология - это форма практически-духовного освоения мира. Она преодолевает, подчиняет и преобразует силы природы в воображении и при помощи воображения. В силу этого мифология никуда не исчезла, а продолжает существовать и сегодня в различных формах. Тем не менее, миф развивается, уступая свои позиции иным формам общественного сознания, прежде всего, философии и науке.
С формальной точки зрения характерной стороной мифа является его дуализм, мышление противоположностями, когда весь мир предстает как скопление бинарных оппозиций: жизнь -смерть, белое - черное, мужское - женское и т.п. По мнению К. Леви-Строса, известного антрополога, мифологическое мышление не только не произвольно, но обладает не менее стройной логикой, чем наука. Только это - иная логика. Кроме того, мифологическое мышление располагает обширным материалом, точными знаниями, особенно ботаническими и зоологическими. Также это мышление дает человеку необходимое ему чувство комфортности в мире (в силу того, что наука опирается исключительно на разум, а миф - еще и на чувства, эмоции, интуицию, сверхчувственные озарения, он более соответствует внутреннему миру человека и дает большее чувство уверенности).
В силу этого К. Леви-Строс назвал такое знание наукой. Но в отличие от абстрактной науки современного типа, это - наука конкретного. Она оперирует не понятиями, а представлениями и служит магическому действию. Основное различие между магическим и научным мышлением - это универсальный детерминизм первого в противовес ограниченному детерминизму (причинности) второго.
Там, где наука основывается на необходимых и всеобщих связях и отношениях действительности, мифологическое мышление опирается на случайные ассоциации, приобретающие устойчивость лишь при соотнесении с реальным опытом, что иногда дает блестящие результаты. Тем не менее, нужно не противопоставлять магию и науку, а видеть в них два параллельных способа познания мира.
И вот это мифологическое здание начинает разрушаться. Этот процесс состоит из нескольких весьма важных шагов.
Во-первых, должен произойти отказ от логики мифа, препятствующей оформлению таких фундаментальных принципов научной идеологии, как универсальность, инвариантность и т.д. Ведь миф отождествлял предмет с его образом, заставляя предмет претерпевать чуждые ему метаморфозы (например, волосы человека могли быть не только простой частью тела, но и замещать самого человека целиком в магических процедурах насылания порчи). В силу этого миф не видит границ между реальным и нереальным, объективным и субъективным, что недопустимо для науки.
Во-вторых, нужно было заменить духовно-личностное отношение к действительности объективно-субстанциональным, представить мир как вещное образование, подлежащее объективному рассмотрению. Промежуточным шагом к этому стали теогонические системы, которые в отличие от мифологических систем не непосредственно чувственны, а содержат в себе элемент научности, проявляющейся в конструировании мира из него самого, а не из восприятии индивида.

ПЕРВЫЕ НАУЧНЫЕ ПРОГРАММЫ АНТИЧНОСТИ

Итак, мы с полным основанием можем говорить о появлении науки именно в Древней Греции. Проходило это в форме научных программ.
Первой научной программой стала математическая программа, представленная Пифагором и позднее развитая Платоном. В ее основе, как и в основе других античных программ, лежит представление о том, что Космос - это упорядоченное выражение целого ряда первоначальных сущностей, которые можно постигать по-разному. Пифагор нашел эти сущности в числах и представил в качестве первоосновы мира. При этом числа вовсе не являются теми кирпичиками мироздания, из которых состоят все вещи. Вещи не равны числам, а подобны им, основаны на количественных отношениях действительности, являющихся подлинно фундаментальными. Картина мира, представленная пифагорейцами, поражала своей гармонией -протяженный мир тел, подчиненный законам геометрии, движение небесных тел по математическим законам, закон прекрасно устроенного человеческого тела, данный каноном Поликлета.
Следующий шаг в направлении формирования этой программы сделали софисты и элеаты, впервые поставившие проблемы человеческого познания, а также разработавшие теорию доказательств. Они заявили, что ум человека - это не просто зеркало, пассивно отражающее природу, он накладывает свой отпечаток на мир, активно формируя его картину.
Свое завершение математическая программа получила в философии Платона, который нарисовал грандиозную картину истинного мира - мира идей, представляющего собой иерархически упорядоченную структуру. Мир вещей, в котором мы живем, возникает, подражая миру идей, из мертвой, косной материи, творцом всего является Бог-демиург (творец, создатель). При этом созидание им мира идет на основе математических закономерностей, которые Платон и пытался вычленить, тем самым математизируя физику. В Новое время именно по этому пути пойдет наука. Но это будет осуществляться уже на новом, более высоком уровне знаний о природе. А пока - платоновская физика представляет собой набор умозрительных рассуждений о связи строения вещества с геометрическими фигурами (огонь, как самое подвижное и «острое», состоит из пирамид; воздух - из восьмигранников, вода - из двадцатигранников и т.д.).
Можно выделить основные позиции этой научной программы, ставшей такой важной в Новое время после появления математизированной науки. Эта программа заложила основы развития естествознания, опираясь не на материальные структуры вещества, а на числовые закономерности, на законы бытия. Согласно этой программе:
1. Мир - это упорядоченный Космос, чей порядок сродни порядку внутри человеческого разума. Следовательно, возможен рациональный анализ эмпирического мира.
2. Упорядоченность Космоса является следствием существования некоего всепроникающего разума, наделившего природу назначением и целью. В силу родства разумов (надмирового и человеческого), он доступен непосредственному восприятию человека, который должен для этого развить соответствующие способности, сосредоточив свои силы.
3. Умственный анализ обнаруживает за видимым миром некий вневременной порядок, сущность нашего мира - количественные отношения действительности.
4. Познание сущности мира требует от человека сознательного развития его познавательных способностей - разума, интуиции, опыта, оценки, памяти, нравственности (ибо познание конечных причин бытия - глубочайшая потребность не только ума, но и души). Итогом познания становится духовное освобождение человека.
Второй научной программой античности, оказавшей громадное влияние на все последующее развитие науки, стал атомизм. Он стал итогом развития греческой философской традиции, синтезом целого ряда ее тенденций и идейных установок. Своими корнями он уходит в ионийскую физику, пифагореизм, философию элеатов. Проблемы бытия и небытия (пустоты), существования и возникновения, множества и числа, делимости и качества - все эти проблемы, затронутые предыдущими школами, нашли свое отражение в системе атомизма. Основателями его стали Левкипп и Демокрит.
На первый взгляд, учение атомизма предельно просто. Начала всего сущего это неделимые частицы-атомы и пустота. Ничто не возникает из несуществующего и не уходит в небытие. Возникновение вещей есть соединение атомов, а уничтожение - распадение на части, в пределе - на атомы. Причиной возникновения является вихрь, собирающий атомы вместе.
Атомизм является физической программой, так как наука, по Демокриту, должна объяснить явления физического мира. Объяснение понимается как указание на механические причины всех возможных изменений в природе - движение атомов. Более глубоких причин, принадлежащих какой-то реальности, не доступной обычному восприятию, нет. Причины естественных явлений безличны и имеют физическую природу, их следует искать в земном мире. Познание мира идет путем сочетания чувственного опыта и его рационального преобразования.
Это была первая в истории мысли программа, основанная на методологическом требовании объяснения целого как суммы отдельных составляющих его частей. Именно так были построены не только физические, но многие психологические и социологические теории Нового времени. По сути дела, это означало появление механистического метода, требовавшего объяснять сущность природных процессов механическим соединением индивидуумов.
Программа Аристотеля стала третьей научной программой античности. Она возникла на переломе эпох. С одной стороны, она еще близка к античной классике с ее стремлением к целостному философскому осмыслению действительности (при этом она пытается найти компромисс между двумя предыдущими программами). С другой, в ней отчетливо проявляются эллинистические тенденции к выделению отдельных направлений исследования в относительно самостоятельные науки, со своими предметом и методом.
Пытаясь найти третий путь, возражая и Демокриту, и Платону с Пифагором, Аристотель отказывается признать существование идей или математических объектов, существующих независимо от вещей. Но не устраивает его и демокритовское появление вещей из атомов. Пытаясь снять это противоречие, Аристотель предлагает четыре причины бытия: формальную, материальную, действующую и целевую. В его «Метафизике» воссоздается мир как целостное, естественно возникшее образование, имеющее причины в себе самом. Это образование предстает перед нами в виде двойственного мира, имеющего неизменную основу, но проявляющегося через подвижную эмпирическую видимость. Предметом науки должны стать вещи умопостигаемые, не подвластные сиюминутным изменениям. Заслугой Аристотеля является и написание его знаменитого «Органона» - трактата по логике, поставившего науку на прочный фундамент логически обоснованного мышления с использованием понятийно-категориального аппарата. Кроме того, Аристотель систематизировал накопленные к этому времени научные знания.
Таковы три основные научные программы античного мира, заложившие основы науки вообще. Все дальнейшее развитие науки по сути было развитием и преобразованием этих научных программ. Это еще не наука в современном смысле слова: еще нет понятия универсального природного закона; еще невозможно применение математики в рамках физики - это разные науки, между которыми нет точек соприкосновения;
еще нет эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и который имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение. Естествознание греков было абстрактно-объяснительным, лишенным деятельного, созидательного компонента.
Тем не менее, только то стечение социокультурных обстоятельств, которое реализовалось в античной Греции, смогло обеспечить условия для возникновения науки. Здесь оформились такие свойства науки, как интерсубъективность, идеальное моделирование действительности, надличностность, субстанциональность, что позволяет говорить о появлении там науки как особого типа отношения к реальности.

План семинарского занятия (2 часа)

1. Проблема начала науки.
2. Научные знания на Древнем Востоке.
3. Наука и миф. От мифа к логосу.
4. Античные научные программы: математическая, атомизм, программа Аристотеля.

Темы докладов и рефератов

1. Знания о природе и человеке в античном мире (физические, химические и биологические знания).
2. Появление научной рациональности.
3. Миф как «наука конкретного».

ЛИТЕРАТУРА

1. Аверинцев С.С. Два рождения европейского рационализма//Вопросы философии. 1989.№3
2. Бернал Дж. Наука в истории общества. М., 1956.
3. Виргинский B.C.. Хотеенков В.Ф. Очерки истории науки и техники до середины XV в. М., 1993.
4. Гайденко П.П. Проблема рациональности на исходе XX в.//Вопросы философии, 1991. №6.
5. Гайденко П.П. Эволюция понятия науки. М., 1980.
6. Ильин В.В.. Калинкин А.Т. Природа науки. М., 1985.
7. Лёви-Cmpoc К. Структурная антропология. М., 1983.
8. Рожанский И.Д. Античная наука. М., 1980.

9. Черняк B.C. История. Логика. Наука. М., 1986.

Бог Тот - древнеегипетский бог мудрости и знаний


Наука на Востоке, с древних времен оставалась областью применения знаний для решения лишь практических проблем, связанных с экономикой и техникой, с одной стороны, и административной деятельностью - с другой. Восточная наука принципиально отличалась от европейской и, с точки зрения последней, таковой вообще не являлась. Она носила, в основном, религиозно-нравственный характер, была связана с чувственным опытом человека и не нуждалась в эксперименте. Ее основная проблематика лежала в гуманитарной сфере и тесно смыкалась с религиозной идеологией, философской «мудростью», сферой эзотерического знания.

Многое из научного наследия древних египтян дошло до наших дней опосредованно - в пересказах греческих историков и философов, заставших культуру Древнего Египта уже в поздний период, на стадии медленного угасания. Эти сведе-ния зачастую были неполными, покрытыми заве-сой тайны, как и почти все, что касалось Египта в греко-римскую эпоху. Bo многом эта таинствен-ность связана с тем, что хранителями научной традиции были жрецы, а наука тесно переплета-лась с религией. Многие знания, особенно имевшие некий сак-ральный смысл, тщательно оберегались и были доступны лишь избранным. Скудные египетские письменные источники свидетельствуют как раз о чрезвычайно сильной устной традиции — научные тексты крайне скудны, а те, что сохранились до сегодняшнего дня, зачастую почти не поддаются расшифровке, смысл их темен и, скорее всего, за-шифрован. Тем не менее, оценивая культуру Древнего Египта, можно убедиться, что египтяне сделали немало открытий во многих основопола-гающих областях науки. Система ирригации и пирамиды — свидетельство высокоразвитой инже-нерии и геометрии, искусство бальзамирования — доказательство практических достижений древне-египетских химиков и медиков.


Часть папируса Ахмеса с задачами


Математика

В области научных познаний набольшее развитие в Др. Египте получила математика как прикладная наука. Для строительства храмов и гробниц, измерения земельных площадей и подсчета налогов требовалась, прежде всего, система исчисления; с этого и началось развитие математики. Измерение круглых площадей и цилиндрических объемов потребовало исчисление квадратного корня. Можно сделать вывод, что египетская математика возникла из потребностей делопроизводства и хозяйственной деятельности египтян. Египтяне пользовались десятеричной непозиционной системой счета, в которой употребляли специальные знаки для обозначения чисел 1, 10, 100 - до 1 миллиона. Оперировали простыми дробями только с числителем 1.

Египетские цифры были изобретены в глубокой древности, видимо, одновременно с письменностью. Они довольно просты. Маленькие вертикальные черточки использовали для записи чисел от единицы до девяти. Знак, напоминающий скобку или подкову, применяли для обозначения 10. Изображение закругленной веревки служило для записи понятия 100. Стебель цветка лотоса обозначал 1000. Поднятый вверх человеческий палец соответствовал 10 000. Изображение головастика было символом 100 000. Фигура сидящего на корточках божества с поднятыми руками обозначала 1 000 000. Таким образом, египтяне применяли десятичную систему исчисления, при которой десять знаков низшего ряда можно было заменить одним знаком последующей ступени.


Египтяне умели умножать и делить, однако эти действия производились довольно трудоемким спо-собом. Деление было «умножением наоборот». Чтобы разделить одно число на другое, нужно было вычислить, на сколько нужно умножить де-литель, чтобы получить делимое. Умножение, ко-торым пользовались египетские математики, носи-ло последовательный характер. Так, действие «5x6» выглядело как (5х2)+(5х2)+(5х2).

При том, что определение площади фигур раз-личной конфигурации было привычной задачей для геометров, египтяне не имели в своем арсена-ле числа «пи», введенного много позднее лишь гре-ческими математиками.

Математика имела не только практическое, но и художественное применение. Некоторые из египет-ских росписей сохранили следы подготовительной работы. Тонкие линии нанесенной под рисунок сетки показали, что художник расчерчивал плос-кость на квадраты и в эти квадраты вписывал по частям фигуры. Такая методика свидетельствует, помимо остроумия технического решения и мате-матической продуманности композиции, о том, что египтяне неплохо изучили пропорции и активно пользовались ими в живописи.


Иероглифическая запись числа 35736


Древние египтяне также обладали некоторыми элементарными знаниями в области алгебры - умели решать уравнения с одним и двумя неизвестными.

На достаточно высоком уровне для того времени находилась геометрия. С высокой степенью точности построены пирамиды, дворцы и скульптурные монументы. В «Московском математическом папирусе» имеются решения трудных задач на вычисление объема усеченной пирамиды и полушария. Объем цилиндра исчисляли, умножая площадь его основания на высоту. Эта операция, связанная с цилиндрической формой меры для зерна, использовалась для учета зерна в государственных хранилищах. Египтяне периода Среднего царства используют уже число «Пи», принимая его равным 3,16, и в целом погрешности при вычислении площадей сферических поверхностей не выходят из пределов допустимых.

Видимо, уже в эпоху Древнего царства («Периодизация истории династического Египта от от полулегендарного царя Менеса до Александра Македонского, примерно с 30 в. до н.э. вплоть до конца IV в. до н.э., тесно связана с манефоновской традицией. Манефон, жрец, живший в Египте вскоре после похода А. Македонского, написал на греческом языке двухтомную «Историю Египта». К сожалению, сохранились только выдержки из его сочинений, самые ранние из которых встречаются в трудах историков I в. н.э.. Но и то, что дошло до нас, часто в искаженном виде, чрезвычайно важно, т.к. это отрывки из книги человека, описавшего историю своей страны, основываясь на хорошо доступных египетских документах. Манефон делил всюисторию династического Египта на три больших периода - Древний, Средний и Новое царства; каждое из названных царств делится на династии, по десять на каждое царство, - всего 30 династий») устанавливается и система мер длины, принятая в Египте во все время существования Египетского царства. Эта система мер была основана на пропорциях человеческого тела. Главной единицей измерений был локоть (равный 52,3 см.) - величина, равная расстоянию от локтя до кончиков пальцев. Семь ладоней шиной в 4 пальца каждая равнялись одному локтю. В локте также были деления (равные ширине одного пальца), которые, в свою очередь, состояли из более мелких частей. Основной мерой площади считался «сечат», равный 100кв. локтям. Основная мера веса «дебен» соответствовала примерно 91 г..

Сохранившиеся математические тексты Др. Египта (1-ая пол. 2-го тыс. до н.э.) состоят по преимуществу из примеров на решение задач и, в лучшем случае, рецептов для их решения, которые иногда удается понять, лишь анализируя числовые примеры, данные в текстах. Следует говорить именно о рецептах для решения отдельных типов задач, т.к. математическая теория в смысле доказательств общих теорем видимо вовсе не существовало. Об этом свидетельствует, например, то, что точные решения употреблялись без весомого отличия от приближенных. Тем не менее, сам запас установленных математических фактов был, в соответствии с высокой строительной техникой, сложностью земельных отношений, потребностью, а точном календаре и т.п., довольно велик.


Выработка железа в Древнем Египте


Химия

Химия в Древнем Египте — наука исклю-чительно прикладная, причем имевшая отчасти сакральный характер. Главная область приложения химических познаний — бальзамирование покойников в рамках культа мертвых. Необходимость со-хранения тела в порядке в течение вечной загроб-ной жизни требовала создания надежных бальза-мировочных составов, не допускавших гниения и разложения тканей.

Химия древних египтян-бальзамировщиков - это всевозможные смолы и соляные растворы, в которых тело сперва вымачивалось, а потом пропи-тывалось ими насквозь. Насыщенность мумий бальзамами была порой настолько высока, что тка-ни с течением веков обугливались. Так, в частно-сти, произошло с мумией фараона Тутанхамона - жирная кислота, содержавшаяся в ароматических маслах и бальзамах, вызвала полное обугливание тканей, так что облик фараона сохранил лишь зна-менитый гроб из чистого золота.


Древнегипетские горшечники


Другой аспект применения химических знаний - стекловарение. Фаянсовые украшения, бусы из цветного стекла — важнейшая отрасль ювелирного искусства древних египтян. Богатая цветовая гамма украшений, попавших в руки археологов, убедитель-но демонстрирует умение египетских стекловаров использовать разнообразные минеральные и органические добавки для окрашивания сырья.

То же самое можно сказать и о кожевенном деле, и о ткацком. Дубить кожу египтяне научи-лись в глубочайшей древности и применяли в этих целях природный танин, которым богаты семена акации, произрастающей в Египте. Разнообразные природные красители использовались и при выдел-ке тканей — льняных и шерстяных. Основные цвета — синий, для получения которого применялась краска индиго, и желтый. Богатейшей цветовой палитрой пользовались египетские художники: росписи времен Древнего, Среднего и Нового царств, сохранившиеся до ва-шего времени в сухом воздухе погребальных камер. Ничуть не утратили своего многоцветья, что как нельзя лучше характеризует качество красителей, применявшихся египтянами.


Медицина

Обширные медицинские познания египтяне полу-чили из практики бальзамирования трупов, которая привела к зна-комству с внутренним строением человеческого тела. В эпоху Древ-него царства отдельные медицинские наблюдения, полученные эмпирическим путем, были подвергнуты отбору и классификации, на основе которых появились первые медицинские трактаты. До нас дошли десять основных медицинских папирусов, получивших свое название или по имени первых владельцев, или по наимено-ванию городов, где они хранятся. Из них наибольшую ценность представляют два — большой медицинский папирус Эберса и хи-рургический папирус Эдвина Смита.

Папирус Эберса был обнаружен в одной из фиванских гроб-ниц в 1872 г. и датирован периодом правления фараона Аменхоте-па I (XVI в. до н. э.). На этом папирусе записаны более сорока текстов по медицине. В нем содержится множество рецептов и предписаний для лечения различных болезней, даются советы, как спастись от укусов насекомых и животных; в разделе косметики содержатся указания о том, как избавиться от морщин, удалить родинки, усилить рост волос и т. п. Все без исключения медицин-ские рецепты сопровождаются соответствующими магическими заклинаниями и заговорами для каждого конкретного случая. В качестве лекарственных средств упоминаются различные растения (лук, чеснок, лотос, лен, мак, финики, виноград), минеральные вещества (сурьма, сода, сера, глина, свинец, селитра), вещества органического происхождения (обработанные органы животных, кровь, молоко). Лекарства приготовлялись обычно в виде настоев на молоке, меде, пиве.

Египетские медики лечили различные лихорадки, дизентерию, водянку, ревматизм, болезни сердца, печени, дыхательных путей, диабет, большинство желудочных заболеваний, язвы и т. д.

В папирусе Эдвина Смита перечисляются различные травмы: головы, горла, ключиц, грудной клетки, позвоночника. Египет-ские хирурги отваживались на довольно сложные операции. Как свидетельствуют находки в гробницах, они использовали хирурги-ческие инструменты, изготовленные из бронзы. Во всем античном мире лучшими врачами, и в частности хирургами, справедливо считались египтяне. Они знали травы и их лекарственные свой-ства, умели во многих случаях ставить точный диагноз, применяли морфий, пользовались опробованными на практике способами лечения. Недостаток знаний восполняли магией и колдовством, которые тоже нередко оказывались полезными (по крайней мере, психологически). Некоторые средства и способы лечения, применявшиеся древнеегипетскими врачами, используются в современной медицине.

Египетских докторов учили, прежде всего, определять симптомы болезни, а затем производить обследования и анализы. Их инструктировали подробно записывать данные своих наблюдений и обследований. Есть сведения о том, что египетские врачи должны были после обследования сказать, могут они вылечить больного или нет. Иногда они делали хирургические операции. Хирурги прокаливали свои инструменты на огне перед операцией и старались соблюдать в максимальной чистоте больного и все, что его окружает.

Древнеегипетские врачи пользовались таким высоким авторитетом на Среднем Востоке, что иногда отправлялись в соседние страны по приглашению их владык. Одна из настенных росписей в гробнице эпохи Нового царства показывает чужеземного царевича, приехавшего в Египет со всей своей семьей, чтобы проконсультироваться с египетским врачом. Врачи проходили обучение у своих старших и опытных коллег, живя какое-то время в их семьях. По всей видимости, в Египте существовали и медицинские школы. Так, есть свидетельство о существовании специальной школы для акушерок. Лучшие доктора становились придворными медиками фараона и его семьи.

Древнеегипетские врачи хорошо разбирались в том, как устроено человеческое тело. Они располагали сведениями о нервной системе и о последствиях травм головного мозга. Они знали, например, что травма правой стороны черепа вызывает паралич левой стороны тела, и наоборот. Хотя они не совсем понимали систему кровообращения. Они знали только, что сердце обеспечивает циркуляцию крови в организме. Пульс они называли «передающим сообщения сердца».

Заболевшему египтянину незачем было знать, чем именно он болен. Гораздо сильнее его интере-совало, сможет ли врач его исцелить. Такой под-ход к делу врача нашел отражение в рекомендаци-ях: «Скажи ему (т.е. больному) только: "С этой бо-лезнью я справлюсь", или "С этой болезнью я, возможно, справлюсь", или "С этой болезнью я не справлюсь", но скажи ему это сразу».

Разумеется, древнейшей и важнейшей отраслью медицины в Древнем Египте была фармакология. До наших дней дошло немало различных рецептов снадобий, изготовлявшихся из растительных и жи-вотных ингредиентов. В этой сфере наука и точное знание особенно тесно взаимодействовали с маги-ческими ритуалами, без которых вообще не мысли-лась древнеегипетская медицина, как и медицина любой другой древней цивилизации. Следует отметить здесь же, что врачи изначаль-но принадлежали к сословию жрецов. Лишь в до-вольно поздний период, не ранее Нового царства, медицинские трактаты выходят из стен писцовых школ, учреждений светских. Вероятно, вследствие упадка влияния храмов, наступившего по оконча-нии Нового царства, медицина в значительной сте-пени секуляризовалась. Но религия по-прежнему играла важную роль в лечении заболеваний, особенно если речь шла о психологических проблемах. При лечении всегда читались молитвы, и чем серьезнее была болезнь, тем, вероятно, важнее было их произнесение. Люди часто обращались в храмы этих богов, чтобы излечиться. При храмах жили доктора, которые были одновременно и жрецами. В некоторых случаях больным разрешалось провести ночь в храмовом помещении рядом со святилищем. Египтяне верили, что больного может исцелить чудо. Если же чуда не произойдет, в этом случае больному будет послан вещий сон, на котором врач сможет основать дальнейшее его лечение.


Астрономия

С глубокой древности основным ис-точником накопления научных знаний в Древнем Египте была хозяйственная деятельность. Для гра-мотной организации годичного сельскохозяйствен-ного цикла необходимо было уметь определять приход очередного времени года, предугадывать разлив Нила, делать какие-то прогнозы относи-тельно обилия паводковых вод. Наблюде-ния за звездами египетские жрецы вели, вероятно, с момента возникновения первых поселений в до-лине Нила. За века они накопили значительное количество астрономических данных, позволявших делать достаточно точные метеорологические про-гнозы — вероятно, как долговременные, так и краткосрочные. Помимо чисто прикладной стороны наблюдения за небом носили и отчасти теоретический характер. Так, известно, что еще астрономы Среднего цар-ства составляли карты звездного неба, видимого в Египте. Такие карты сохранились в росписях на потолке некоторых древнеегипетских храмов. По-мимо Сета—Сириуса, важнейшей звезды для древ-них египтян, на этих картах присутствует Гор — Венера, Вечерняя звезда. Видимо, именно от древнеегипетс-ких жрецов пошла традиция изображать на картах звездного неба созвездия в виде символических фигур. Внимательное наблюдение за небом позволило египетским жрецам довольно быстро научиться определять разницу между звездами и планетами. Таблицы положения звезд и небесных тел помога-ли египетским астрономам при определении про-странственного положения. Умели жрецы-астрономы, и предсказывать солнечные затмения, даже ис-числять их продолжительность. Однако эта сторо-на астрономических познаний была безраздельной тайной высшего жречества. Сельскохозяйственный годовой цикл привел к необходимости создания календаря. Древнееги-петский солнечный календарь — поистине ше-девр точности древних астрономов. По большо-му счету именно этот календарь лег в основу тех календарей, которыми человечество пользуется и сегодня. Год начинался в апреле — в тот день, когда на рассветном небе восходил Сириус, звезда, которую древнейшие обитатели долины Нила называли Се-том. Предрассветный восход Сета—Сириуса пред-вещал долгожданный подъем воды в Ниле и нача-ло нового жизненного цикла. Египетский год длился 365 дней. Цикл разлива Нила диктовал де-ление на три времени года — паводок, высыхание вод и ила на полях и засуха. В каждом из сезонов было по четыре месяца, и каждый месяц посвя-щался определенным сельскохозяйственным рабо-там. Месяцы были равными, по тридцать дней, и делились на три декады. Последние пять дней до-бавлялись в конце года, чтобы соотнести его с сол-нечным циклом. Недостаток этого календаря заключался лишь в том, что год календарный и год солнечный не со-впадали полностью. Древние египтяне не знали о високосном годе, поэтому с течением времени на-капливались довольно значительные расхождения между солнечным и календарным годом — один день в четыре года, почти месяц за столетие.

Египетский день состоял из 24 часов, и для из-мерения времени существовали два вида часов — солнечные и водяные. Кроме того, в ночное вре-мя суток время можно было определить и по по-ложению звезд, пользуясь теми же астрономичес-кими таблицами.

Второй древнеегипетский календарь был основан на фазах Луны. Так как лунный месяц состоит из 29,5 дней, в этот календарь постоянно необходимо вносить поправки. Однако им продолжали пользоваться для вычисления дат некоторых религиозных церемоний. Первый календарь, предусматривающий деление года на 365 дней, был введен еще в эпоху Древнего царства, возможно царем Имхотепом. Так как в году насчитывается 365,25 дня, то этот календарь стал постепенно отставать от даты наступления нового года, рассчитываемой по положению Сопдета. После посещения Египта Юлий Цезарь приказал ввести его по всей Римской империи. Вариант этого календаря, известный под названием юлианского, использовался в Европе до тех пор, пока в XVI в. не был создан грегорианский календарь — тот самый, которым мы пользуемся и сегодня.


Послесловие

Потребности производства, социально-экономического и собственно культурного развития привели к накоплению реальности знаний - математических, астрономических, биологических, медицинских. Письменность же позволила их фиксировать и передавать следующим поколениям.

Наука есть постижение мира, в котором мы живем. Соответственно этому науку принято определять как высокоорганизованную и высокоспециализированную деятельность по производству объективных знаний о мире, включающем и самого человека. Вместе с тем производство знаний в обществе не самодостаточно, оно необходимо для поддержания и развития жизнедеятельности человека.

Познания египтян в различных областях оказали существенное влияние на развитие античной, и следовательно, европейской науки. Греки всегда смотрели на Египет как на страну древней мудрости и считали египтян своими учителями.

Зарождение научных знаний в Египте и других древнейших государствах не привело к появлению науки в собственном смысле слова; можно говорить только о ее элементах, которые пользовались главным образом в практических, утилитарных целях. Кроме того, египетская «наука» очень тесно связана с мифологией, религией и магией.

Литература
Большая Советская Энциклопедия (том 9 и 15). А. М. Прохоров. - М.:Советская энциклопедия, 1972.
Всемирная история. М.А. Ксенова, С. Исмаилов. - М.: Аванта+, 1993.
Всемирная история. Бронзовый век. А. Н. Бадак, И. Е. Войнич. - М.:АСТ, 2002.
История Востока. Том 1: Восток в древности. Р. Б. Рыбаков. - М.:Восточная литература, 1999.
История мировой культуры. С. Карпушина, В. Карпушин. - М.:NOTA BENE, 1998.
Мировая культура: Шумерское царство. Вавилон и Ассирия. Древний Египет. А. Зайцев, В. Лаптаев, А. Порьяз. -М.: Олма-Пресс, 2000.

Ученые о Ведах

Для начала заметим, что мудрость древних Вед признавали многие знаменитые ученые и величайшие умы человечества XIX-XX века. Американский философ и писатель Генри Дэвид Торо писал: «В великом учении Вед нет ни тени сектантства. Оно предназначено для всех эпох, климатических регионов и наций и является королевской дорогой к достижению Великого Знания».

Лев Толстой в письме индийскому гуру Премананду Бхарати в 1907 году заметил: «Метафизическая религиозная идея Кришны - вечная и универсальная основа всех истинных философских систем и всех религий».

Наш классик литературы также говорил: «Только такие великие умы, как древние индусские мудрецы, могли додуматься до этого великого понятия... Наши христианские понятия духовной жизни происходят от древних, от еврейских, а еврейские - от ассирийских, а ассирийские - от индийских, и все идут ходом обратно: чем новее, тем ниже, чем древнее, тем выше».

Любопытно, что Альберт Эйнштейн специально учил санскрит, чтобы прочитать в подлиннике Веды, в которых описывались общие закономерности физической природы.

Многие другие известные люди, такие как Кант, Гегель, Ганди признавали Веды как источник разнообразных знаний.

От ноля до кальпы

Древние математики в Индии ввели множество понятий, которыми мы пользуемся до сих пор. Заметим, что лишь в VII веке нашей эры цифра «ноль» впервые начало упоминаться в арабских источниках, и только в VIII веке она дошла до Европы.

Однако в индийской математике понятие ноля (на санскрите «шунья») известно с IV века до нашей эры!

Именно в древней Индии впервые появилось эта цифра. Заметим, что без понятия о нуле не могла бы существовать бинарная система и компьютеры. Десятичная система счисления была также изобретена в Индии.

В древней Индии было известно число «пи», а так же теорема Пифагора, точнее теорема Баудхаяны, который ее впервые изложил в VI веке до нашей эры.

Самое маленькое число, приведенное в Ведах – крати. Оно равно одной тридцатичетырехтысячной секунды. Самое большое число – кальпа – равняется 4,32 миллиарда лет.

Кальпа – это день Брахмы. По прошествии этого периода наступает ночь Брахмы, равная по продолжительности дню. Таким образом, божественные сутки длятся 8,64 млрд лет. Месяц Брахмы состоит из тридцати таких суток (тридцати дней и тридцати ночей), что составляет 259,2 млрд лет, а год Брахмы (3,1104·1012 обычных лет) - из двенадцати месяцев. Брахма живет сто лет (3,1104·1014, или 311 триллионов 40 миллиардов лет), по прошествии которых умирает.

Бхаскарачарья – первый!

Как мы знаем, польский ученый Николай Коперник выдвинул предположения о том, что Земля вращается вокруг Солнца в 1543 году. Однако за 1000 лет до этого ведический астроном и математик Арьябхатта утверждал то же самое: «Как человеку, плывущему на лодке, кажется, что деревья на берегах движутся, также и людям, живущим на Земле, кажется, что движется Солнце».

В своей работе под названием «Ариабхатия» ученый утверждал, что Земля круглая, вращается вокруг своей оси и вокруг Солнца и «висит» в космосе. Кроме того, он привел точные данные о размерах Земли и Луны.

Теория притяжения также была хорошо известна астрономам древности. Мудрец Бхаскарачарья в знаменитом астрономическом трактате «Сурья Сидханта» пишет: «Объекты падают на Землю вследствие силы ее притяжения. Земля, Луна, Солнце и другие планеты держатся на своих орбитах также силой притяжения».

Заметим, что Исаак Ньютон открыл закон притяжения только в 1687 году.

В «Сурья Сидханте» Бхаскарачарья приводит время, необходимое Земле, чтобы обойти вокруг Солнца: 365,258756484 дня. Современные ученые принимают цифру 365,2596 дней.

«Ригведа» утверждала, что Луна – это спутник Земли! «Будучи спутником Земли, Луна вращается вокруг своей материнской планеты и сопровождает ее во вращении вокруг отцовской планеты – Солнца. Всего в солнечной системе 32 планеты-спутника. Луна – единственный спутник, имеющий собственную индивидуальную природу. Размер остальных спутников не превышает 1/8 размера своих материнских планет. Луна – единственный спутник очень большого размера».

Происхождение материи разъясняли «Упанищады»: «Из него (Абсолюта) произошло пространство, из которого произошел ветер, из ветра произошел огонь, из огня – вода, а из воды – земля». Это очень похоже на последовательность происхождения материи, как ее понимают современные физики: плазма, газ, энергия, жидкость, твердое вещество.

Удивительные памятники прошлого

От древней ведической цивилизации остались не только теоретические знания, а вполне конкретные следы материальной культуры. Храмовый комплекс Ангкор Ват в джунглях Камбоджи посвящен богу Вишну и является одним из самых удивительных памятников ведической цивилизации.

Это самое крупное религиозное сооружение мира. Его площадь составляет 200 кв. км, а не его территории проживало 500 тысяч человек.

Как было создано это удивительное сооружение, до сих пор остается загадкой. Вот что пишет Й. Ивасаки, директор геолого-исследовательского института в г. Осака, Япония:

«Начиная с 1906 г. в Ангкоре работала группа французских реставраторов. В 50-е гг. французские специалисты попытались поднять камни на крутую насыпь. Но так как угол крутой насыпи составляет 40º, после того как была построена первая ступень высотой 5 м, насыпь разрушилась. Была предпринята вторая попытка, но с тем же результатом. В конце концов французы отказались от идеи следовать историческим технологиям и установили бетонную стену внутри пирамиды, чтобы сохранить земляные сооружения. Сегодня нам не известно, как древние могли строить такие высокие и крутые насыпи».

Рядом с Ангкором находится огромное водохранилище . Размеры водоема составляют 8 км на 2,1 км, а глубина – 5 метров. Сделано оно в незапамятные времена. Поражает точность границ водохранилища и грандиозность выполненных работ. Этот огромный водоем имеет четкие прямые границы, что нехарактерно даже для современных подобных сооружений.

Еще в одном храме, расположенном в деревне Лепакши в Индии (штат Андхра-Прадеш), имеется загадка, которую не дает покоя многим исследователям. В храме находится 69 обычных колонн и одна особенная - она не касается земли. Местные гиды для развлечения туристов просовывают под нее газету или палки, чтобы показать, что колонна действительно «парит» в воздухе.

Долгие годы эксперты пытались разгадать тайну висящей колонны. Например, британские инженеры в период колонизации Индии даже пытались выбить колонну с ее места, но к счастью, у них ничего не получилось. До сих пор, несмотря на передовые инженерные знания и современное оборудование, ученые не открыли секрет висячей колонны, нарушающей законы гравитации…

Если мы рассмотрим науку по критерию (1), то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и ее передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда -стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это — профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность. Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.

Дата публикования: 2014-11-04; Прочитано: 183 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

— основные этапы развития и бытия науки как особого вида познавательной деятельности Человека, обусловленные как внутренними возможностями и закономерностями ее становления, так и влиянием со стороны социокультурного контекста, органическим элементом которого наука, как и остальные подсистемы культуры, всегда являлась и является. Выделяют обычно шесть различных исторических форм науки: 1) древняя преднаука (или пранаука (Вавилон, шумеры, Древний Египет); 2) античный тип науки (VII в до н. э. - III в. н. э.; 3) средневековая европейская наука (IV в. - XVI в.); 4) классическая (XVII - XIX вв.); 5) неклассическая (начало XX в. - 70-е гг. XX в.); 6) постнеклассическая (70-е гг. XX в. по наст. вр.). Каждая из исторических форм науки отличается от других не только своей предметной спецификой, но и идеологическими, социально-культурными и методологическими основаниями. Особенности древней пранауки: непосредственная связь с практикой, рецептурный, эмпирический, сакрально-кастовый и догматический характер знания. Характерные черты античной науки: созерцательность, внутренняя самодостаточность, логическая доказательность, системность, методологическая рефлексивность, демократизм, открытость к критике. Особенности европейской средневековой науки: теологизм, телеологизм, герменевтика, схоластика, догматизм.

Принципиально новые интенции и особенности естествознания складываются в эпоху Возрождения и Новое время (XV -XVII вв.): светский характер, Е1атурализм, объектность, экспериментально-математический характер, практическая применимость, доказательность. Триумфом развития классической науки становится создание механики Галилея -Ньютона, гелиоцентрической космологии Коперника -Кеплера, механико-математической картины мира. Гуманитарные дисциплины (история, педагогика, медицина, языкознание) также постепенно освобождаются от влияния теологии и рассматриваются как средство совершенствования человека и его самореализации. К XVIII в. в Европе полностью формируется новая социокультурная реальность: классическая наука. Ее идеология: критический дух, объективность, практическая направленность. Принципы онтологии классической науки: антителсологизм, детерминизм, механицизм. Ее гносеологические основания: однозначный характер научных законов, эмпирическая проверяемость и логическая доказательность научного знания. Методология классической науки: количественные методы исследования, эксперимент, математическая модель объекта, дедуктивный метод построения научных теорий, критицизм. Постепенно происходит институализация науки, создаются профессиональные научные сообщества со своими уставами, возникают научные и учебные заведения нового типа (инженерные, политехнические вузы и школы, лаборатории, испытательные стенды, полевые исследования, академии наук, научные журналы). Во второй половине XIX в. происходит резкое усиление социальной базы науки, возникает «большая наука», укрепляется связь науки с производством, создается промышленный сектор науки, происходит формирование новой системы «наука-техника-технология». В конце XIX в. - начале XX в. возникает кризис в основаниях классической науки, происходят научные революции в математике, физике, социальных науках, создаются и принимаются научным сообществом новые фундаментальные теории, во многом несоизмеримые с прежними: неевклидовы геометрии, теория относительности (частная и общая), квантовая механика, генетика, синтетическая теория эволюции, интуиционистская математика и логика, неклассические экономические социальные и гуманитарные теории. Создается неклассическая наука с новыми философскими основаниями. Онтология неклассической науки: релятивизм, вероятностный детерминизм, массовость, системность, эволюционность научных объектов. Гносеология неклассической науки: субъект-объектность научного знания, гипотетичность научных законов и теорий, частичная эмпирическая и теоретическая верифицируемость научного знания, антифундаментализм. Методология неклассической науки: отсутствие универсального научного метода, плюрализм научных методов и средств, интуиция, когнитивный конструктивизм. В середине XX в. происходит научно-техническая революция, результатом которой становится создание в развитых странах наукоемкой экономики, главным источником массовых инноваций в которой становится наука. С превращением науки в решающую силу общественного развития наука становится важнейшим объектом государственной научной политики развитых стран. В конце XX в. начала складываться новая историческая форма науки - постнеклассическая (или неонеклассическая, или постмодернистская). Ее преимущественный предмет исследования - сверхсложные и эволюционные системы. Лидерами постнеклассической науки становятся биология, экология, глобалистика, науки о человеке. Социальным основанием постнеклассической науки является необходимость экологического и гуманитарного контроля над научно-техническим развитием, уменьшением его негативных последствий для настоящего и будущего человечества. В настоящее время происходит формирование новых философских оснований науки. Принципы онтологии постнеклассической науки: системность, нелинейность, эволюционизм, антропологизм. Ее гносеологические основания: проблемность, коллективность научно-познавательной деятельности, контекстуальность научного знания, полезность, экологическая и гуманитарная направленность научной информации. Методология постнеклассической науки: методологический плюрализм, конструктивизм, коммуникативность, консенсуальность, эффективность и целесообразность научных решений. В современной науке и обществе происходят компьютерная, телекоммуникационная и биотехнологическая революции. Основой развития экономики все более становятся высокие технологии. В гуманитарных и социальных науках происходит «лингвистический поворот», начинает преобладать установка, с одной стороны, на микроанализ, а, с другой - на контекстуальность рассмотрения, возможный и необходимый плюрализм подходов, на «демистификацию факта», на социокультурное и ценностное измерение гуманитарных и социальных теорий.

Будущее науки видится в сосуществовании и интеграции сформированных ранее исторических типов научности: классического, неклассического и постнеклассического. В разных научных дисциплинах в зависимости от степени их развития и характера решаемых теоретических и практических проблем реализуется один из ни-х как более эффективный. Глобализация науки становится одним из главных резервов дальнейшего поддержания высоких темпов развития и эффективности мировой и национальной науки. (См. наука, история науки, развитие науки, методологический кластер, парадигма, фон науки).

Элементы естественных знаний, знаний в области естественных наук, накапливались постепенно в процессе практической деятельности человека и формировались большей частью исходя из потребностей этой практической жизни, не становясь самодостаточным предметом деятельности. Выделяться из практической деятельности эти элементы начали в наиболее организованных обществах, сформировавших государственную и религиозную структуру и освоивших письменность: Шумер и Древний Вавилон, Древние Египет, Индия, Китай. Чтобы понять, почему одни моменты естествознания появляются ранее других, вспомним, области деятельности, знакомые человеку той эпохи: — сельское хозяйство, включая земледелие и скотоводство; — строительство, включая культовое; — металлургия, керамика и прочие ремесла; — военное дело, мореплавание, торговля; — управление государством, обществом, политика; — религия и магия. Рассмотрим вопрос: развитие каких наук стимулируют эти занятия? 1. Развитие сельского хозяйства требует развития соответствующей с/х техники. Однако от развития последней до обобщений механики слишком долгий период, чтобы всерьез рассматривать генезис механики из, скажем, потребностей земледелия. Хотя практическая механика, несомненно, развивалась в это время. Например, можно проследить появление из примитивной древнейшей зернотерки, через зерновую мельницу (жернова) водяной мельницы (V-III вв. до н.э.) - первой машины в мировой истории.

2. Ирригационные работы в Древнем Вавилоне и Египте требовали знания практической гидравлики. Управление разливом рек, орошение полей при помощи каналов, учет распределяемой воды развивает элементы математики. Первые водоподъемные приспособления - ворот, на барабан которого был намотан канат, несущий сосуд для воды; «журавль» - древнейшие предки кранов и большинства подъемных приспособлений и машин.

3. Специфические климатические условия Египта и Вавилона, жесткое государственное регулирование производства диктовали необходимость разработки точного календаря, счета времени, а отсюда - астрономических познаний. Египтяне разработали календарь, состоящий из 12-ти месяцев по 30 дней и 5-ти дополнительных дней в году. Месяц был разделен на 3 десятидневки, сутки на 24 часа: 12 дневных часов и 12 ночных (величина часа была не постоянной, а менялась со временем года). Ботаника и биология еще долго не выделялись из сельскохозяйственной практики. Первые начатки этих наук появились только у греков.

4. Строительство, особенно грандиозное государственное и культовое требовали, по крайней мере, эмпирических знаний строительной механики и статики, а также геометрии. ДревнийВосток был хорошо знаком с такими механическими орудиями как рычаг и клин. На сооружение пирамиды Хеопса пошло 23 300 000 каменных глыб, средний вес которых равен 2,5 тонны. При сооружении храмов, колоссальных статуй и обелисков вес отдельных глыб достигал десятков и даже сотен тонн. Такие глыбы доставлялись из каменоломен на специальных салазках. В каменоломнях для отрыва каменных глыб от породы служил клин. Подъем тяжестей осуществлялся с помощью наклонных плоскостей. Например, наклонная дорога к пирамиде Хефрена имела подъем 45,8 м и длину 494,6 м. Следовательно, угол наклона к горизонту составлял 5,3 0 , и выигрыш в силе при поднятии тяжести на эту высоту был значительным. Для облицовки и пригонки камней, а возможно и при подъеме их со ступеньки на ступеньку, применялись качалки. Для поднятия и горизонтального перемещения каменных глыб служил также рычаг. К началу последнего тысячелетия до н.э. народам Средиземноморья были достаточно хорошо известны те пять простейших подъемных приспособлений, которые впоследствии получили название простых машин: рычаг, блок, ворот, клин, наклонная плоскость. Однако до нас не дошел ни один древнеегипетский или вавилонский текст с описанием действия подобных машин, результаты практического опыта, видимо, не подвергались теоретической обработке. Строительство больших и сложных сооружений диктовало необходимость знаний в области геометрии, вычислении площадей, объемов, которое впервые выделилось в теоретическом виде. Для развития строительной механики необходимо знание свойств материалов, материаловедение. Древний Восток хорошо знал, умел получать очень высокого качества кирпич (в том числе обожженный и глазурованный), черепицу, известь, цемент.

5. В древности (еще до греков) было известно 7 металлов: золото, серебро, медь, олово, свинец, ртуть, железо, а также сплавы между ними: бронзы (медь с мышьяком, оловом или свинцом) и латуни (медь с цинком). Цинк и мышьяк использовались в виде соединений. Существовала и соответствующая техника для плавки металлов: печи, кузнечные мехи и древесный уголь как горючее, что позволяло достигнуть температуры 1500 0С для плавления железа. Разнообразие керамики, производимой древними мастерами, позволило, в частности, археологии в будущем стать почти точной наукой. В Египте варили стекло, причем разноцветное, с применением разнообразных пигментов-красителей. Широкой гамме пигментов и красок, применявшихся в различных областях древнего мастерства, позавидует современный колорист. Наблюдения над изменениями природных веществ в ремесленной практике, наверное, послужили основой для рассуждений о первооснове материи у греческих физиков. Некоторые механизмы, применяемые ремесленниками, чуть ли не до сей поры, изобретены в глубокой древности. Например, токарный станок (конечно, ручной, деревообрабатывающий), прялка.

6. Нет нужды долго распространяться о влиянии торговли, мореплавания, военного дела на процесс возникновения научных знаний. Отметим только, что даже простейшие виды оружия должны делаться с интуитивным знанием их механических свойств. В конструкции стрелы и метательного копья (дротика) уже заложено неявное понятие об устойчивости движения, а в булаве и боевом топоре - оценка значения силы удара. В изобретении пращи и лука со стрелами проявилось осознание зависимости между дальностью полета и силой броска. В целом, уровень развития техники в военном деле был значительно выше, чем в сельском хозяйстве, особеннов Греции и Риме. Мореплавание стимулировало развитие той же астрономии для координации во времени и пространстве, техники строительства судов, гидростатики и многого другого. Торговля способствовала распространению технических знаний. Кроме того, свойство рычага - основы любых весов было известно задолго до греческих механиков-статиков. Следует отметить, что в отличие от сельского хозяйства и даже ремесла, эти области деятельности были привилегией свободных людей.

7. Управление государством требовало учета и распределения продуктов, платы, рабочего времени, особенно, в восточных обществах. Для этого были нужны хотя бы начатки арифметики. Иногда (Вавилон) государственные нужды требовали знаний астрономии. Письменность, сыгравшая важнейшую роль в становлении научных знаний - во многом продукт государства.

8. Взаимоотношения религии и зарождающихся наук предмет особого глубокого и отдельного исследования. В качестве примера укажем лишь, что связь между звездными небом и мифологией египтян очень тесная и прямая, а потому развитие астрономии и календаря диктовалось не только нуждами сельского хозяйства. В дальнейшем, в контексте материала лекций,мы будем обращать внимание на эти связи.

Постараемся просуммировать сведения о том, что было выделено на Древнем Востоке как теоретическое знание.

Математика. Известны египетские источники II-го тысячелетия до н.э. математического содержания: папирус Ринда (1680 г. до н.э., Британский музей) и Московский папирус. Они содержат решение отдельных задач, встречающихся в практике, математические вычисления, вычисления площадей и объемов. В Московском папирусе дана формула для вычисления объема усеченной пирамиды. Площадь круга египтяне вычисляли, возводя в квадрат 8/9 диаметра, что дает для числа пи остаточно хорошее приближение - 3,16. Несмотря на существование всех предпосылокНейгебауэр /1/ отмечает достаточно низкий уровень теоретической математики в древнем Египте. Это объясняется следующим: “Даже в наиболее развитых экономических структурах древности потребность в математике не выходила за пределы элементарной домашней арифметики, которую ни один математик не назовет математикой. Требования же к математике со стороны технических проблем таковы, что средств древней математики было недостаточно для каких бы то ни было практических приложений”. Шумеро-вавилонская математика была на голову выше египетской. Тексты, на которых основаны наши сведения о ней относятся к 2-м резко ограниченным и далеко отстоящим друг от друга периодам: большая часть - ко времени древневавилонской династии Хаммурапи 1800 - 1600 гг. до н.э., меньшая часть - к эпохе Селевкидов 300 - 0 гг. до н. э. Содержание текстов отличается мало, появляется лишь знак “0”. Невозможно проследить развитие математических знаний, все появляется сразу, без эволюции. Существует две группы текстов: большая - тексты таблиц арифметических действий, дробей и т.п., в том числе ученические, и малочисленная, содержащая тексты задач (около 100 из найденных500 000 табличек). Вавилоняне знали теорему Пифагора, знали очень точно значение главного иррационального числа -корня из 2, вычисляли квадраты и квадратные корни, кубы и кубические корни, умели решать системы уравнений и квадратные уравнения. Вавилонская математика носит алгебраический характер. Так же как для нашей алгебры ее интересует только алгебраические соотношения, геометрическая терминология не употребляется. Однако и для египетской и для вавилонской математики характерно полное отсутствие теоретических изысканий методов счета. Нет попытки доказательства. Вавилонские таблички с задачами делятся на 2 группы: “задачники” и “решебники”. В последних из них решение задачи иногда завершается фразой: “такова процедура”. Классификация задач по типам была той высшей ступенью развития обобщения, до которой сумела подняться мысль математиков Древнего Востока. Видимо, правила находились эмпирическим путем, путем многократных проб и ошибок. При этом математика носила сугубо утилитарный характер. С помощью арифметики египетские писцы решали задачи о расчете заработной платы, о хлебе, о пиве для рабочих и т.п. Нет еще четкого различия между геометрией и арифметикой. Геометрия является лишь одним из многих объектов практической жизни, к которым можно применить арифметические методы.

Структура научного знания на Древнем Востоке. Наука древнего востока

В этом отношении характерны специальные тексты, предназначенные для писцов, занимавшихся решением математических задач. Писцы должны были знать все численные коэффициенты, нужные им для вычислений. В списках коэффициентов содержатся коэффициенты для “кирпичей”, для “стен”, для “треугольника”, для “сегмента круга”, далее для “меди, серебра, золота”, для “грузового судна”, “ячменя”, для “диагонали”, “резки тростника” и т.д./2/. Как считает Нейгебауэр, даже вавилонская математика не перешагнула порога донаучного мышления. Он, впрочем, связывает этот вывод не с отсутствием доказательств, а с неосознанностью вавилонскими математиками иррациональности корня из 2.

Астрономия.

Египетская астрономия на протяжении всей своей истории находилась на исключительно незрелом уровне /1/. Судя по всему, никакой иной астрономии кроме наблюдений за звездами для составления календаря в Египте не было. В египетских текстах не нашлось ни одной записи астрономических наблюдений. Астрономия применялась почти исключительно для службы времени и регулирования строгого расписания ритуальных обрядов. Египетская астрономическая терминология оставила следы в астрологии. Ассиро-вавилонская астрономия вела систематические наблюдения с эпохи Набонассара (747 г до н.э.). За период “доисторический” 1800 - 400 гг. до н.э. в Вавилоне разделили небосвод на 12 знаков Зодиака по 300 каждый, как стандартную шкалу для описания движения Солнца и планет, разработали фиксированный лунно-солнечный календарь. После ассирийского периода становится заметен поворот к математическому описанию астрономических событий. Однако наиболее продуктивным был достаточно поздний период 300 - 0 гг. Этот период снабдил нас текстами, основанными на последовательной математической теории движения Луны и планет. Главной целью месопотамской астрономии было правильное предсказание видимого положения небесных тел: Луны, Солнца и планет. Достаточно развитая астрономия Вавилона объясняется обычно таким важным ее применением как государственная астрология (астрология древности не имела личностного характера). Ее задачей было предсказание благоприятного расположения звезд для принятия важных государственных решений. Таким образом, несмотря на нематериалистическое применение (политика, религия) астрономия на Древнем Востоке также как и математика носила сугубо утилитарный, а также догматический, бездоказательный характер. В Вавилоне ни одному наблюдателю не пришла в голову мысль: “А соответствует ли видимое движение светил их действительному движению и расположению?”. Однако среди астрономов, работавших уже в эллинистическое время, был известен Селевк Халдеянин, который, в частности, отстаивал гелиоцентрическую модель мира Аристарха Самосского.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Доклад по Истории Философии

На тему: Предпосылки научных знаний в культуре древнего востока

Научные знания на древнем Востоке

Если мы рассмотрим науку по первому критерию, то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и её передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда – стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это — профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

Лично-именной тип передачи знаний связан с ранними этапами человеческой истории, когда необходимые для жизни сведения передаются каждому человеку через обряды инициации, мифы как описания деяний предков. Так передаются знания-персоналии, являющиеся индивидуальными умениями.

Универсально-понятийный тип трансляции знаний не регламентирует субъекта познания родовыми, профессиональными и прочими рамками, делает знание доступным любому человеку. Этому типу трансляции соответствуют знания-предметы, являющиеся продуктом познавательного освоения субъектом определенного фрагмента реальности, что говорит о появлении науки.

Профессионально-именной тип трансляции знаний характерен для древнеегипетской цивилизации, просуществовавшей четыре тысячи лет почти без изменений. Если там и происходило медленное накопление объема знаний, то совершалось это стихийным образом.

Более динамичной в этом отношении была вавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Именно они создали астрологию, которую считали вполне практическим занятием.

То же самое можно утверждать о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших там важнейшей частью повседневной жизни.

Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность.

Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, притом, что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

Третьим критерием науки является рациональность. Сегодня нам это кажется тривиальным, но ведь вера в возможности разума появилась далеко не сразу и не везде. Восточная цивилизация так и не приняла этого положения, отдавая предпочтение интуиции и сверхчувственному восприятию. Например, вавилонская астрономия (точнее, астрология), вполне рационалистическая по своим методам, основывалась на вере в иррациональную связь небесных светил и человеческих судеб. Там знание было эзотерическим, предметом поклонения, таинством. Рациональность и в Греции появилась не ранее VI в. до н.э. Науке там предшествовали магия, мифология, вера в сверхъестественное. И переход от мифа к логосу был шагом огромной важности в развитии человеческого мышления и человеческой цивилизации вообще.

Не соответствовали научные знания Древнего Востока и критерию системности. Они были просто набором алгоритмов и правил для решения отдельных задач. И не имеет значения, что некоторые из этих задач были достаточно сложными (например, вавилоняне решали квадратные и кубические алгебраические уравнения). Решение частных задач не выводило древних ученых на общие законы, отсутствовала система доказательств (а греческая математика с самого начала пошла путем строгого доказательства математической теоремы, формулируемой в максимально общей форме), что делало способы их решения профессиональной тайной, сводившей, в конечном счете, знание к магии и фокусам.

Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации

Науке как таковой предшествует преднаука (доклассический этап), где зарождаются элементы (предпосылки) науки. Здесь имеются в виду зачатки знаний на Древнем Востоке, в Греции и Риме.

Становление преднауки на Древнем Востоке. Формированию феномена науки предшествовал длительный, многотысячелетний этап накопления простейших, преднаучных форм знания. Возникновение древнейших цивилизаций Востока (Месопотамия, Египет, Индия, Китай), выразившееся в появлении государств, городов, письменности и др., способствовало накоплению значительных запасов медицинского, астрономического, математического, сельскохозяйственного, гидротехнического, строительного знания. Потребности мореплавания (морской навигации) стимулировали развитие астрономических наблюдений, потребности лечения людей и животных – древней медицины и ветеринарии, потребности торговли, мореплавания, восстановления земельных участков после разливов рек – развития математических знаний и т.п.

Особенностями древневосточной преднауки являлись :

1. непосредственная вплетенность и подчиненность практическим потребностям (искусству измерения и счета - математика, составлению календарей и обслуживанию религиозных культов - астрономия, техническим усовершенствованиям орудий производства и строительства - механика)

2. рецептурность (инструментальность) “научного” знания;

3. индуктивный характер;

4. разрозненность знания;

5. эмпирический характер его происхождения и обоснования;

6. кастовость и закрытость научного сообщества, авторитет субъекта – носителя знания

Есть мнение, что преднаучное знание не имеет отношения к науке, поскольку оперирует абстрактными понятиями.

Развитие сельского хозяйства стимулировало развитие сельскохозяйственных механизмов (мельниц, например). Ирригационные работы требовали знания практической гидравлики. Климатические условия требовали разработки точного календаря. Строительство требовало знаний в области геометрии, механики, материаловедения. Развитие торговли, мореплавания и военного дела способствовали развитию оружия, техники строительства судов, астрономии и т. д.

В античности и в Средние века в основном имело место философское познание мира. Здесь понятия “философия”, “наука”, “знание” фактически совпадали. Все знания существовали в рамках философии.

Многие ученые считают, что наука возникла в Античности, в рамках античной натурфилософии зародилось естествознание и сформировалась дисциплинарность как особая форма организации знания. В натурфилософии возникли первые образцы теоретической науки: геометрия Евклида, учение Архимеда, медицина Гиппократа, атомистика Демокрита, астрономия Птоломея и пр. первые натурфилософы были в большей степени учеными, чем философами, изучающими многообразные природные явления. Социально-политические условия в Древней Греции способствовали образованию самостоятельных городов-полисов с демократическими формами правления Греки чувствовали себя свободными людьми, любили во всем доискиваться до причин, рассуждать, доказывать. Кроме того, греки переходят к рациональному в отличие от мифа осмыслению действительности, создают теоретическое знание.

Греки заложили фундамент будущей науки, для появления науки они создали следующиеусловия :

1. Систематическое доказательство

2. Рациональное обоснование

3. Развили логическое мышление, особенно дедуктивное умозаключение

4. Использовали абстрактные объекты

5. Отказались от использования науки в материально-предметных действиях

6. Осуществили переход к созерцательному, умозаключительному постижению сущности, т.е. к идеализации (использование идеальных объектов, которые в реальном мире не существует, например, точка в математике)

7. Новый тип знания – “теория”, которая позволяла из эмпирических зависимостей получить некие теоретические постулаты.

Но в эпоху античности наука в современном значении этого слова не существовала : 1. Не был открыт эксперимент как метод 2. Не использовались математические методы 3. Отсутствовало научное естествознание

Античный мир обеспечил применение метода в математике и вывел ее на теоретический уровень. В Античности большое внимание уделялось постижению истины, т.

Научные знания на древнем Востоке

е. логике и диалектике. Происходили всеобщая рационализация мышления, освобождение от метафоричности, переход от чувственного мышления к интеллекту, оперирующему абстракциями.

Первую систематизацию того, что впоследствии стали называть наукой, предпринял Аристотель – величайший мыслитель и наиболее универсальный ученый античности. Он делил все науки на теоретические, имеющие целью само знание (философия, физика, математика); практические, руководящие человеческим поведением (этика, экономика, политика); творческие, направленные на достижение прекрасного (этика, риторика, искусство). Изложенная Аристотелем логика господствовала более 2 тысяч лет. В ней классифицировались высказывания (общие, частные, отрицательные, утвердительные), выявлялась их модальность: возможность, случайность, невозможность, необходимость, определялись законы мышления: закон тождества, закон исключения противоречия, закон исключенного третьего. Особое значение имело его учение об истинных и ложных суждениях и выводах. Аристотель разрабатывал логику как всеобщую методологию научного познания. Говоря о Римской Империи необходимо заметить, что в ней не было философов и ученых, которые могли бы сравниться с Платоном, Аристотелем или Архимедом. Наука была подчинена практике, а все труды римских писателей носили компилятивно-энциклопедический характер.

Т. о., античная цивилизация характеризовалась наличием античной логики и математики, астрономии и механики, физиологии и медицины. Античная наука носила математико-механистический характер, первоначальной программой провозглашалось целостное осмысление природы, а также отделение науки от философии, вычисление особых предметных областей и методов.