Новый процесс получения водорода из сплава алюминия. Реакции алюминия с водородом и другими веществами Получение водорода из алюминия

При взаимодействии с водой одного килограмма электровзрывного нанопорошка алюминия выделяется 1244,5 л водорода, который при сжигании дает 13,43 МДж тепла. Эффективность такого процесса получения водорода выше, чем в случае электролиза. Окисление электровзрывного нанопорошка алюминия протекает на 100 %, т. е. применяемый материал используется полностью.


Описание:

Для ряда важных применений в гражданской и военной области необходимы мобильные источники энергии, в частности, работающие на водороде, и технологии, которые бы обеспечили получение водорода в обычных, полевых условиях. Техническое решение этой проблемы – получения водорода основано на применении энергоаккумулирующих веществ с хемотермическим эффектом, в частности использование генераторов водорода работающих на эффекте саморазогрева электровзрывных наночастиц алюминия (ALEX) в воде.

При взаимодействии с водой одного килограмма электровзрывного нанопорошка алюминия выделяется 1244,5 л водорода, который при сжигании дает 13,43 МДж тепла. Эффективность такого процесса получения водорода выше, чем в случае электролиза. Окисление электровзрывного нанопорошка алюминия протекает на 100 %, т. е. применяемый материал используется полностью.

Особенности теплового режима процесса взаимодействия нанопорошков алюминия с водой приводят к появлению новых эффектов, которые не были известны для реакции с участием крупных порошков алюминия.

В первую очередь – это эффект саморазогрева наночастиц до температур, превышающих температуру окружающей воды на сотни градусов.

Так, при использовании промышленного порошка алюминия микронного размера скорость выделения водорода составляет лишь 0,138 мл в секунду на 1 г порошка. При этом в конечный продукт – смесь оксидов и гидроксидов алюминия – превращается только 20…30 % исходного порошка. Нанопорошок алюминия по своей реакционной способности превосходят обычные промышленные порошки микронного размера. В то же время, скорость выделения водорода при взаимодействии нанопорошка алюминия с дистиллированной водой при 60 °С составляет 3 мл в секунду на 1 г порошка, при 80 °С – 9,5 мл в секунду на 1 г порошка, что превышает скорость выделения водорода при гидротермальном синтезе приблизительно в 70 раз.

Другим преимуществом использования нанопорошка в данной реакции является то, что степень превращения алюминия составляет 98…100 % (в зависимости от температуры).

Более того, введение в дистиллированную воду даже незначительных количеств щелочи приводит к значительному возрастанию скорости реакции: при увеличении рН раствора до 12 скорость выделения водорода возрастает до 18 мл в секунду на 1 г порошка при 25 °С. Скорость выделения водорода при растворении алюминия микронного размера в растворе, содержащем 8 г/л NaOH, при этой же температуре, составляет лишь 1 мл в секунду на 1 г порошка.

Приведенные данные показывают, что электровзрывные нанопорошки алюминия, в отличие от компактного алюминия и крупных промышленных порошков, взаимодействуют с водой с большой скоростью и степенью превращения ~100 % и именно их применение позволит получать водород с достаточной скоростью при обычных условиях.


Преимущества:

– простой и эффективный способ получения водорода в обычных и полевых условиях,

получение водорода с высокой скоростью – в 10 (десятки) раз, превышающая традиционные технологии ,

промышленное получение водорода из воды кислот цинка электролизом воды соляной кислоты газа в лаборатории своими руками серной кислоты
раствор методы схема уравнения установка способы реакции электролизер для получения водорода
химическое получение кислорода перекиси аммиака пероксида оксида жидкого водорода в домашних условиях металлом свойства железа видео
получение электроэнергии воды из водорода и кислорода в промышленности применение из алюминия
способы электролизер для получения водорода своими руками купить из воды
уравнение реакций технологии аппарат формула процесс промышленный способ бинарное неорганическое соединение для получения водорода пара
использование энергии получение водорода

Коэффициент востребованности 257

«Водород генерируется только при необходимости, так что вы можете произвести его ровно столько, сколько нужно», - пояснил Вудалл на университетском симпозиуме, где описывались детали открытия. Данная технология может, например, применяться совместно с небольшими двигателями внутреннего сгорания в различных применениях – портативных аварийных генераторах, газонокосилках и пилах. Теоретически, она может быть использована и на легковых автомобилях и грузовиках.

Водород выделяется самопроизвольно, когда вода добавляется к шарикам, выполненным из сплава алюминия и галлия. «При этом алюминий в твердом сплаве реагирует с водой, отрывая от ее молекул кислород», - комментирует Вудалл. Соответственно, оставшийся водород выделяется в окружающее пространство.

Наличие галлия является критичным для прохождения реакции, так как он препятствует формированию пленки оксида на поверхности алюминия при его окислении. Такая пленка обычно предотвращает дальнейшее окисления алюминия, выступая в качестве барьера. Если же ее формирование окажется нарушенным, реакция будет идти до тех пор, пока не израсходуется весь алюминий.

Вудалл открыл данный процесс с жидким сплавом алюминия-галлия в 1967 году, когда он работал в полупроводниковой промышленности. «Я очищал тигель, содержавший сплав галлия и алюминия, - рассказывает он, - Когда я добавил туда воду, произошел сильный хлопок. После этого я удалился в лабораторию и в течение нескольких часов изучал, что же именно произошло».

«Необходимым компонентом является галлий, так как он плавится при низкой температуре и растворяет алюминий, что делает возможным реакцию последнего с водой. – поясняет Вудалл. – Это было неожиданным открытием, так как хорошо известно, что твердый алюминий не взаимодействует с водой».

Конечными продуктами реакции являются галлий и оксид алюминия. Сжигание же водорода приводит к образованию воды. «Таким образом, никаких токсичных выбросов не получается, - говорит Вудалл, - Важно отметить и то, что галлий не участвует в реакции, так что его можно утилизировать и использовать вновь. Это важно, так как сейчас этот металл намного дороже алюминия. Впрочем, если данный процесс начнет широко использоваться, то добывающая промышленность сможет выпускать более дешевый низкосортный галлий. Для сравнения, весь используемый сейчас галлий имеет высокую степень очистки и используется, главным образом, в полупроводниковой промышленности».

Вудалл говорит, что, так как водород может использоваться вместо бензина в двигателях внутреннего сгорания, возможно применение методики на автомобильном транспорте. Однако для того, чтобы технология смогла конкурировать с бензиновой, необходимо снизить стоимость восстановления оксида алюминия. «Сейчас стоимость одного фунта алюминия превышает $1, и поэтому вы не сможете получить количество водорода, эквивалентное бензину по цене $3 за галлон», - поясняет Вудалл.

Впрочем, стоимость алюминия может быть снижения, если он будет получаться из оксида с помощью электролиза, а электроэнергия для него будет идти с или . В этом случае алюминий может производиться прямо на месте, и отпадает необходимость в передаче электроэнергии, что снижает общие затраты. Кроме того, такие системы могут располагаться в удаленных районах, что особенно важно при постройке атомных электростанций. Данный подход, по мнению Вудалла, позволит уменьшить использование бензина, снизить загрязнение и зависимость от импорта нефти.

«Мы называем это водородной энергетикой на основе алюминия, - говорит Вудалл, - Причем не будет никаких сложностей, чтобы переделать двигатели внутреннего сгорания на работу от водорода. Все, что нужно – заменить их топливный инжектор на водородный».

Также система может применяться и для питания топливных ячеек. В этом случае она уже может конкурировать с бензиновыми двигателями – даже при сегодняшней высокой стоимости алюминия. «КПД систем на топливных элементах составляет 75%, тогда как двигателя внутреннего сгорания – 25%, - говорит Вудалл, - Таким образом, как только технология будет широко доступной, наша методика извлечения водорода станет экономически оправданной».

Ученые подчеркивают ценность алюминия для генерации энергии. «Большинство людей не догадывается, насколько много энергии заключено в нем, - поясняет Вудалл, - Каждый фунт (450 граммов) металла может дать 2 кВт*часа при сжигании выделившегося водорода, и еще столько же энергии в виде тепла. Таким образом, средний автомобиль с баком, заполненным шариками из сплава алюминия (около 150 кг) сможет проехать порядка 600 км, и это будет стоить $60 (при этом предполагается, что оксид алюминия затем будет утилизирован). Для сравнения, если я залью в бак бензин, то буду получать с каждого фунта 6 кВт*часов, что в 2.5 раза больше энергии от фунта алюминия. Другими словами, мне нужно будет в 2.5 раза больше алюминия, чтобы получить такое же количество энергии. Однако важно то, что я полностью исключаю бензин, и применяю вместо него дешевое вещество, доступное в США».

Опубликовано: 12 окт. 2013 г.
Водород выделяется лазером из воды с помощью древесного угля. Температура более тысячи градусов моментально сжигает углерод с водой, вернее с кислородом воды при этом водород выделяется из воды. Этот ролик показывает как свет эектрической дуги выделяет водород из воды и древесного угля.
Каменный уголь изолирует молнии а энергия от древесных углей создает атомарный водород, а также гидрокарбонат, лекарство от старения и самое хорошее питание для растений, за тем и озона.

Получение водорода из воды по формуле H2O + C +e = -H2CO3 и +H а именно вода древесный уголь энергия например лазер энергия молнии или электричество. Дешевые катализаторы для выделения водорода из воды и использование переменного напряжения 50 герц это даже можно сказать мое открытие. Я обнаружили простой способ получения водорода из воды, с помощью простого катализатора графит или древесный уголь.
Как выделить водород из воды с помощью древесного угля вы найдете в моем сайте http://xn--c1atbkq7d.xn--p1ai/ Нюргун.РФ, главный секрет приготовления правильного угля.
Уголь нужно сжигать большим количеством воздуха, И нагреванием угля выше тысячи двести градусов, только тогда она становится катализатором водорода, и молекула воды нагреется до тысячи градусов.

Подготовка графита для получения водорода из воды, через сжигания угля под водой. Опубликовано: 25 апр. 2015 г.
Уникальная комбинация уклерод соединений для извлечения водорода атомарного из пресной воды без каких либо добавок.

Быстрое и медленное горение вод(ы)орода, как доказательство выделения водорода из воды с помощью древесного угля. Опубликовано: 12 мая 2015 г.
Водород использую для медицины для снятия усталости.
Потребителю без разницы каким образом греют ему горячую воду, или сжиганием углеводородов или сверх эффективным новым технологиям.

Водород - широко распространенный элемент. Благодаря своей уникальности он может выступать в качестве окислителя и в качестве восстановителя. Существует несколько методов получения водорода .

Промышленный метод получения водорода.

1. Электролиз водных растворов солей (поваренная соль NaCl ).

2. Пропускание паров поды над раскаленным коксом (Т = 1000 °С):

H 2 O + C = H 2 + CO ,

Реакция обратима!

Смесь (Н 2 , СО и Н 2 О ) называется водяным газом.

А на 2-ой стадии водяной газ пропускают над оксидом железа (III) при температуре около 450°С:

СО + Н 2 О = СО 2 + Н 2 ,

Часто эту реакцию называют реакцией сдвига.

3. Получение из природного газа. Основа - конверсия метана (основной компонент природного газа, СН 4 ) с водяным паром. В итоге получается обратимая смесь, которая называется синтез-газом. Условия протекания процесса: никелевый катализатор и 1000°С:

СН 4 + Н 2 О = СО 2 + 3Н 2 ,

Эту реакцию часто используют для получения водорода для реакции Габера (синтез аммиака).

4. Крекинг нефтяных продуктов.

Лабораторный метод получения водорода.

1. Под воздействием разбавленных кислот на металлы, которые стоят в ряду напряжения левее водорода.

Zn + HCl = ZnCl 2 + H 2 ,

2. Электролиз растворов кислот, щелочей на катоде выделяется водород.

3. Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

4. Гидролиз гидридов:

NaH + H 2 O = NaOH + H 2 ,

5. Реакция кальция с водой:

Ca + 2H 2 O = Ca(ОН) 2 + H 2 .