Определить величину силы тока, проходящую через тело человека при случайном прикосновении к корпусу неисправного оборудования. Определить величину силы тока, проходящую через тело человека при случайном прикосновении к корпусу неисправного оборудования Ка

Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействия.

Тепловое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон.

Химическое действие ведет к электролизу крови и других содержащихся в организме растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма.

Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток и тканей организма. В результате такого возбуждения они могут погибнуть.

Различают два основных вида поражения человека электрическим током: электрический удар и электрические травмы.

Электрическим ударом называется такое действие тока на организм человека, в результате которого мышцы тела начинают судорожно сокращаться. При этом в зависимости от величины тока и времени его действия человек может находиться в сознании или без сознания, но при нормальной работе сердца и дыхания. В более тяжелых случаях потеря сознания сопровождается нарушением работы сердечнососудистой системы, что ведет даже к смертельному исходу. В результате электрического удара возможен паралич важнейших органов (сердца, мозга и пр.).

Электрической травмой называют такое действие тока на организм, при котором повреждаются ткани организма: кожа, мышцы, кости, связки. Особую опасность представляют электрические травмы в виде ожогов. Такой ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Бывают также такие травмы, как металлизация кожи, различные механические повреждения, возникающие в результате резких непроизвольных движений человека. В результате тяжелых форм электрического удара человек может оказаться в состоянии клинической смерти: у него прекращается дыхание и кровообращение. При отсутствии медицинской помощи клиническая смерть (мнимая) может перейти в смерть биологическую. В ряде случаев, однако, при правильной медицинской помощи (искусственном дыхании и массаже сердца) можно добиться оживления мнимоумершего.

Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца, остановка дыхания вследствие паралича мышц грудной клетки и так называемый электрический шок.

Прекращение работы сердца возможно в результате непосредственного действия электрического тока на сердечную мышцу или рефлекторно из-за паралича нервной системы. При этом может наблюдаться полная остановка работы сердца или так называемая фибрилляция, при которой волокна сердечной мышцы приходят в состояние быстрых хаотических сокращений.

Остановка дыхания (вследствие паралича мышц грудной клетки) может быть результатом или непосредственного прохождения электрического тока через область грудной клетки, или вызвана рефлекторно вследствие паралича нервной системы.

Электрический шок представляет собой нервную реакцию организма на возбуждение электрическим током, которая проявляется в нарушении нормального дыхания, кровообращения и обмена веществ. При длительном шоковом состоянии может наступить смерть.

Если оказана необходимая врачебная помощь, то шоковое состояние может быть снято без дальнейших последствий для человека.

Из вышесказанного становится понятно, что на тяжесть поражения человека электрическим током влияет много факторов. Наиболее неблагоприятный исход поражения будет в случаях, когда прикосновение к токоведущим частям произошло влажными руками в сыром или жарком помещении.

Поражение человека электрическим током в результате электрического удара может быть различным по тяжести, т. к. на степень поражения влияет ряд факторов: величина тока, продолжительность его прохождения через тело, частота, путь, проходимый током в теле человека, а также индивидуальные свойства пострадавшего (состояние здоровья, возраст и др.). Основным фактором, влияющим на исход поражения, является величина тока, которая, согласно закону Ома, зависит от величины приложенного напряжения и сопротивления тела человека. Большую роль играет величина напряжения, т. к. при напряжениях около 100 В и выше наступает пробой верхнего рогового слоя кожи, вследствие чего и электрическое сопротивление человека резко уменьшается, а ток возрастает.

Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты при величине тока 1-1,5 мА и постоянного тока 5-7 мА. Эти токи называются пороговыми ощутимыми токами. Они не представляют серьезной опасности, и при таком токе человек может самостоятельно освободиться от воздействия.

При переменных токах 5-10 мА раздражающее действие тока становится более сильным, появляется боль в мышцах, сопровождаемая судорожным их сокращением. При токах 10-15 мА боль становится трудно переносимой, а судороги мышц рук или ног становятся такими сильными, что человек не в состоянии самостоятельно освободиться от действия тока.

Основным фактором, определяющим величину сопротивления тела человека (принято считать 1000 Ом), является кожа, ее роговой верхний слой, в котором нет кровеносных сосудов. Этот слой обладает очень большим удельным сопротивлением, и его можно рассматривать как диэлектрик. Внутренние слои кожи, имеющие кровеносные сосуды, железы и нервные окончания, обладают сравнительно небольшим удельным сопротивлением.

Внутреннее сопротивление тела человека является величиной переменной, зависящей от состояния кожи (толщины, влажности) и окружающей среды (влажности, температуры и т. д.).

При повреждении рогового слоя кожи (ссадина, царапина и пр.) резко снижается величина электрического сопротивления тела человека и, следовательно, увеличивается проходящий через тело ток. При повышении напряжения, приложенного к телу человека, возможен пробой рогового слоя, отчего сопротивление тела резко понижается, а величина поражающего тока возрастает.

Переменные токи 10-15 мА и выше и постоянные токи 50-80 мА и выше называются неотпускающими токами, а наименьшая их величина 10-15 мА при напряжении промышленной частоты 50 Гц и 50-80 мА при постоянном напряжении источника называется пороговым неотпускающим током.

Переменный ток промышленной частоты величиной 25 мА и выше воздействует не только на мышцы рук и ног, но также и на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть. Ток 50 мА при частоте 50 Гц вызывает быстрое нарушение работы органов дыхания, а ток около 100 мА и более при 50 Гц и 300 мА при постоянном напряжении за короткое время (1-2 с) поражает мышцу сердца и вызывает его фибрилляцию. Эти токи называются фибрилляционными. При фибрилляции сердца прекращается его работа как насоса по перекачиванию крови. Поэтому вследствие недостатка в организме кислорода происходит остановка дыхания, т. е. наступает клиническая (мнимая) смерть. Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. Чем больше время протекания тока через тело человека, тем тяжелее его результаты и больше вероятность летального исхода.

Большое значение в исходе поражения имеет путь тока. Поражение будет более тяжелым, если на пути тока оказывается сердце, грудная клетка, головной и спинной мозг.

Путь тока имеет еще то значение, что при различных случаях прикосновения будет различной величина сопротивления тела человека, а следовательно, и величина протекающего через него тока.

Наиболее опасными путями прохождения тока через человека являются: "рука - ноги", "рука - рука". Менее опасным считается путь тока "нога - нога".

Как показывает статистика, наибольшее число несчастных случаев происходит вследствие случайного прикосновения или приближения к голым, незащищенным частям электроустановок, находящихся под напряжением. Для защиты от поражения током голые провода, шины и другие токоведущие части либо располагают в недоступных местах, либо защищают ограждениями. В некоторых случаях для защиты от прикосновения применяют крышки, короба и т. п.

Поражение током может возникнуть при прикосновении к нетоковедущим частям электроустановки, которые оказываются под напряжением при пробое изоляции. В этом случае потенциал нетоковедущей части оказывается равным потенциалу той точки электрической цепи, в которой произошло нарушение изоляции.

Опасность поражения усугубляется тем, что прикосновение к нетоковедущим частям в условиях эксплуатации является нормальной рабочей операцией, поэтому поражение всегда является неожиданным.

Влияние на уровень электробезопасности режима нейтрали трехфазных электрических сетей

Место соединения концов фаз источника питания (генератора или трансформатора) называется нейтралью (точка 0).

Режимы нейтрали:

  1. заземленная нейтраль,
  2. изолированная нейтраль,
  3. компенсированная нейтраль.

Заземленная нейтраль

Ток однофазного короткого замыкания в сети с заземленной нейтралью достаточно велик и сопровождается возникновением дуги, что делает невозможным использование таких сетей в угольных шахтах и помещениях, опасных в отношении взрыва и пожара. Поэтому сети с заземленной нейтралью могут использоваться в помещениях, не опасных в отношении взрыва и пожара. Защита от короткого замыкания осуществляется плавкими вставками или реле максимальной токовой защиты, что удешевляет эксплуатационные расходы. Напряжение поврежденной фазы при однофазном замыкании падает до 0, напряжения неповрежденных фаз меняются незначительно, поэтому нет повышенных требований к изоляции.

На промышленных предприятиях используется наиболее распространенная система 220/380 В с заземленной нейтралью. В случае прикосновения к фазному проводу через тело человека будет протекать ток
что очень опасно.

Прикосновение тела человека к фазному проводу в сети с заземленной нейтралью всегда опасно.

Изолированная нейтраль

При однофазном замыкании на землю в сети с изолированной нейтралью ток короткого замыкания определяется сопротивлением изоляции, которое, в свою очередь, определяется активным и емкостным сопротивлением. При хорошем состоянии изоляции и небольшой длине кабелей (емкость кабеля невелика) сопротивление изоляции достаточно велико, ток однофазного замыкания небольшой - возможно возникновение искрения при отсутствии дугового разряда, что делает возможным применение таких сетей во взрывоопасных и пожароопасных помещениях.

Прикосновение к фазному проводу в сети с изолированной нейтралью может быть безопасным при хорошем состоянии изоляции, так как ток через тело человека определяется сопротивлением изоляции.

Ток с одной из фаз проходит через тело человека, через сопротивление изоляции на другие фазы. В сети 220/380 В при сопротивлении изоляции 60 кОм ток через человека:

что безопасно.

При большой длине кабельных линий суммарная емкость сети увеличивается, сопротивление изоляции снижается, прикосновение человека к фазному проводу может стать опасным. Кроме того, в случае пробоя изоляции одной из фаз и прикосновения к другой фазе на тело человека воздействует линейное напряжение и в токовой цепи отсутствует сопротивление изоляции, что гораздо опаснее. Поэтому необходим непрерывный контроль изоляции и немедленное отключение участка сети при пробое одной из фаз или опасном снижении сопротивления.

Компенсированная нейтраль

Нейтральная точка соединяется с землей через индуктивное сопротивление , примерно равное емкостному сопротивлению изоляции Хс, что приводит к образованию "электрической пробки", при которой емкостная проводимость сравнивается с проводимостью индуктивной.

Поскольку они соединены параллельно, суммарная проводимость становится равной примерно 0, а это соответствует бесконечно большому сопротивлению. Величина тока, протекающего через тело человека при прикосновении его к фазному проводу в сети с компенсированной нейтралью, существенно уменьшается.

Двухфазное (двухполюсное) прикосновение более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение. Ток через человека рассчитывается по формуле:

прикосновение человека к двум фазам Для сети постоянного тока 220 В ток через тело человека будет равен:

Этот ток является неотпускающим и человек не может освободиться от него без посторонней помощи.

10.Ток, проходящий через тело человека , п 2-х проводной сети изолированной от земли (схема, формула).


Очевидно, что чем лучше изоляция проводов относительно земли , тем меньше опасность однофазного (и двухфазного) прикосновения к проводу .

11.Ток, проходящий через тело человека , п ри однофазном прикосновении в однофазной двухпроводной сети с заземлённым проводом (схема, формула).


где:
- сопротивление заземления провода. Очевидно, что при
человек оказывается практически под полным напряжением сети, а ток через тело человека имеет наибольшее значение.

12.Ток, проходящий через тело человека , п ри однофазном прикосновении в 3-х фазной сети с заземлённой нейтралью (схема, формула).


(2.3)

13.Ток, проходящий через тело человека , п ри однофазном прикосновении в 3-х фазной сети с изолированной нейтралью (схема, формула).


(2.5)

14.Замыкания на корпус в электроустановках.

Замыканием на корпус называется случайное электрическое соединение токоведущей части с металлическими нетоковедущими частями электроустановки.

15.Замыкания на землю в электроустановках.

Замыканием на землю называется случайное электрическое соединение токоведущей части непосредственно с землей или нетоковедущими проводящими конструкциями и предметами, не изолированными от земли.

16.Классификация электроустановок и помещений.

Условно электроустановки можно разделить на: -электроустановки до 1 кВ; -электроустановки выше 1 кВ; -электроустановки с малым напряжением (не более 42 В); -электроустановки с малыми токами замыкания на землю (I з 500А); -электроустановки с большими токами замыкания на землю (I з 500А). В отношении опасности поражения людей электрическим током помещения различаются на:

* Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную и особую опасность;

* Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий:

Сырость или токопроводящая пыль;

Токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.);

высокая температура;

Возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющих соединение с землей, технологическим аппаратом, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой.

* Особо опасные помещения, характеризуются наличием одного из следующих условий:

Особая сырость;

Химически активная или органическая среда;

Одновременно два или более условий повышенной опасности.

"

Непосредственно соприкосновение с токоведущими частями установок, находящимися под напряжением, связано с опасностью поражения током. При этом степень опасности и возможность поражения электрическим током зависят от того, каким образом произошло прикосновение человека к проводникам, находящимся под напряжением.

Возможны два случая прикосновений:

1) к двум линейным проводам одновременно;

2) к одному линейному проводу.

Двухфазное прикосновение. Прикосновение к двум линейным проводам (двум фазам) одновременно (рис. 6, а) является чрезвычайно опасным, поскольку к телу человека в этом случае прикладывается наибольшее возможное в данной сети напряжение — линейное. Ток, протекающий через тело человека, равен

где I ч — ток, протекающий через тело человека, в А;

U л — линейное напряжение установки в В;

U ф — фазовое напряжение в В;

R ч — сопротивление человека в Ом.

В сети с линейным напряжением 380 В и при сопротивлении тела человека 1000 Ом через человека будет проходить ток, равный I ч =380/1000= 0,38 А

Такой ток является, безусловно, опасным для жизни человека.

Рис. 6. Схема пути электрического тока :

а— при двухфазном прикосновении; б — при однофазном прикосновении в системе с заземленной нейтралью; в — при однофазном прикосновении в системе с изолированной нейтралью; г — при однофазном прикосновении в системе при наличии емкости

Случаи двухфазного прикосновения человека происходят очень редко. Достаточно сказать, что из всех случаев электропоражений с тяжелым исходом на долю одновременных прикосновений к двум фазам приходится от 3 до 10%.

Однофазное прикосновение. В 90—97% случаев, повлекших тяжелые электропоражения, имело место прикосновение к одной фазе,. Однако прикосновение к одной фазе является значительно менее опасным, чем двухфазное прикосновение. Объясняется это тем, что при однофазном прикосновении напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в =1,73 раза. Соответственно меньше оказывается и ток, протекающий через тело человека. Кроме того, на величину этого тока влияет также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Нейтрали генераторов и трансформаторов могут быть выполнены либо глухозаземленными, либо изолированными от земли. Глухозаземленной называется нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформаторы тока и т. д.). Изолированной называется нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (например, компенсационные катушки, трансформаторы напряжения и т. д.).

На рис. 6, б и в показаны схемы электрических сетей с заземленной и изолированной нейтралью.

Однофазное прикосновение в сети с глухозаземленной нейтралью. При таком прикосновении (рис. 6, б) ток, протекающий через тело человека, определяется фазовым напряжением сети , сопротивлением тела R ч, сопротивлением R п пола и почвы на участке от ступней ног до заземляющего устройства, сопротивлением обуви R o б и сопротивлением заземления нейтрали источника тока R 0:

Рассмотрим наиболее неблагоприятный случай. Предположим, что человек, прикоснувшийся к одной фазе, стоит на сыром грунте или на проводящем (металлическом или земляном) полу; его обувь также проводящая — сырая или имеет металлические гвозди. Следовательно, можно принять R п = 0 и R об = 0.

Поскольку сопротивление заземления нейтрали R 0 , как правило, равно 4 Ом, им без ущерба для точности подсчета можно пренебречь. В результате формула примет вид .

При линейном напряжении U л = 380 В через тело человека будет протекать ток, равный

Такой ток опасен для жизни.

Если же человек стоит на изолирующем полу (например, из метлахской плитки) в непроводящей обуви (например, резиновой), то, принимая R п = 120 000 Ом и R об = 100 000 Ом, получим

Такой ток безопасен для человека.

В действительности незагрязненные полы из метлахской плитки и резиновая обувь обладают значительно большим сопротивлением по сравнению с принятыми нами, т. е. ток, протекающий через человека, будет еще меньше.

Однофазное прикосновение в сети с изолированной нейтралью. При однофазном прикосновении человека в сети, имеющей изолированную нейтральную точку (рис. 6, б), ток проходит от места контакта через тело человека, затем через обувь, пол, землю и несовершенную изоляцию проводов к двум другим фазам и далее к источнику электроэнергии. Величина тока, проходящего через тело человека, в этом случае равна

где R из — сопротивление изоляции одной фазы сети относительно земли в Ом.

В наиболее неблагоприятном случае, когда человек стоит на проводящем полу и имеет проводящую обувь, т. е. при R п = 0 и R об = 0, формула значительно упростится:

При U л = 380 В и R из = 500 000 Ом получим

Этот ток значительно меньше тока (0,22 А), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Если же принять R п = 120 000 Ом и R = 100 000 Ом, то ток будет еще меньше:

Следовательно, в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше сила тока, протекающего через человека. В сети с заземленной нейтралью положительная роль изоляции проводов практически полностью утрачена.

Таким образом, при прочих равных условиях однофазное прикосновение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью, и, следовательно, система с изолированной нейтралью при нормальном состоянии изоляции менее опасна для человека, чем система с глухим заземлением нейтрали. Однако в линии такой системы может длительное время существовать незамеченное персоналом замыкание одной из фаз на землю. Если в это время человек прикоснется к проводу одной из двух других фаз, то окажется под полным линейным напряжением сети, что равносильно двухфазному прикосновению.

Общие требования обустройстве электросетей. Согласно Правилам устройства электроустановок в четырехпроводных сетях переменного тока и трехпроводных сетях постоянного тока выполняют глухое заземление нейтрали. Сети с изолированной нейтралью применяют при повышенных требованиях безопасности с обязательным устройством контроля изоляции сети и целости пробивных предохранителей силовых трансформаторов, позволяющих персоналу быстро обнаружить замыкание на землю, либо с устройством автоматического отключения участков, получивших замыкание на землю.

Опасность воздействия емкостного тока. В связи с тем, что каждая электрическая установка имеет емкость, необходимо учитывать также ее опасное влияние и возможное поражение током. Выше было сказано, что наименьшую опасность представляет однофазное прикосновение в системе с изолированной нейтралью при наличии качественной изоляции фаз. Однако даже в случае идеальной изоляции поражение током возможно и зависит от величины емкостного тока.

Емкость тока зависит от конструкции сети (воздушная или кабельная), напряжения и сечения проводов. При равных условиях (одинаково высоком напряжении, например, в 10 кВ) емкость жилы подземного кабеля среднего сечения относительно земли значительно больше емкости одной фазы относительно земли воздушной линии (соответственно, 0,2*10 -6 Ф/км и 0,0045*10 -6 ÷ 0,005 X 10 -6 Ф/км).

Предположим, что изоляция сети находится в таком хорошем состоянии, что токами утечки через изоляцию можно пренебречь, но сеть имеет некоторую емкость по отношению к земле. Для рассматриваемого случая схема прикосновения человека к одной фазе и образования цепи движения токов утечки через емкость показана на рис. 6, г.

Общее выражение для емкостного тока, протекающего через тело человека, будет

где jχ c — емкостное сопротивление одной фазы, выраженное в символической форме (здесь χ c = 1/(ω*C)—реактивное сопротивление емкости, где ω = 2πf— угловая частота переменного тока; f — частота тока в Гц; С—емкость фазы по отношению к земле в Ф).

Если взять модуль полного сопротивления, то ток, протекающий через тело человека:

При значительной емкости сети, которая имеет место в разветвленных и протяженных кабельных сетях, величина тока, протекающего через тело человека, может оказаться опасной для жизни. В таких случаях электрические системы с изолированной нейтралью в отношении безопасности полностью теряют преимущества перед системами с заземленной нейтралью и их следует рассматривать как равноценные. Но для сетей малой и средней протяженности однофазное прикосновение менее опасно для систем с изолированной нейтралью.

Опасность шаговых напряжений. Опасность поражения током может возникнуть вблизи места перехода тока

Рис. 7.

в землю с упавшего фазного провода. В зоне растекания токов (рис. 7) человек подвергается воздействию шаговых напряжений, т. е. напряжений, обусловленных, током замыкания на землю между точками почвы, отстоящими друг от друга в зоне растекания токов на расстоянии шага. Опасность поражения в этом случае увеличивается при сокращении расстояния между человеком и местом замыкания на землю и увеличении ширины шага.

Сила тока однофазного замыкания на землю I з может быть определена по формуле величина шагового напряжения U ш по формуле

где R 0 — сопротивление рабочего заземления нейтрали в Ом;

R p — сопротивление растеканию тока в месте замыкания фазного провода на землю в Ом;

ρ - удельное сопротивление грунта в Ом*см;

а — длина шага в см;

х — расстояние от места замыкания фазного провода до места измерения напряжения в см.

Определим величину шагового напряжения, воздействию которого подвергается стоящий на земле человек, если произошло замыкание на землю в сети напряжением 330/220 В с заземленной нейтралью. Сопротивление рабочего заземления R 0 = 4 Ом. Сопротивление растеканию тока в месте замыкания R р = 12 Ом (это соответствует наименьшему значению сопротивления, за исключением случая замыкания на металлическую конструкцию большой протяженности). Человек находится на расстоянии х = 4 м от точки замыкания. Величина шага а = 0,8 м. Удельное сопротивление, грунта растеканию тока ρ = 3*10 4 Ом*см.

Первоначально определим силу тока замыкания на землю а затем величину шагового напряжения

Параметры тока, проходящего через человека при воздействии шагового напряжения, зависят, кроме того, от сопротивлений опорной поверхности ног и обуви. Защитное действие оказывает обувь, обладающая хорошими изоляционными свойствами, например, резиновая.

Наибольшее сопротивление заземляющего устройства Я 3 (в Ом) не должно быть более

R 3 = 250/I,

где I - расчетная сила тока замыкания на землю, А.

При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ

R 3 = 250/I,

При удельном сопротивлении земли ρ , большем 500 Омм, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от ρ .

Сила тока I ч проходящего через тело человека, является главным фактором, от которого зависит тяжесть поражения.

Прикосновение человека к одной фазе - однофазное включение - значительно менее опасно , чем к двум - двухфазное.

Это объясняется тем, что,

во- первых , человек оказывается в этом случае под фазным напряжением, которое в -√3 раз меньше линейного;

во-вторых , в цепи оказывается последовательно включенным ряд дополнительных сопротивлений (пола, обуви и др.).

Сила тока, проходящего через тело человека при однофазном включении, составит:

В сети с заземленной нейтралью (рис. 1.2)

В сети с изолированной нейтралью (см. рис. 1.1, а)

где - сопротивление обуви человека, Ом; R п - сопротивление пола, на котором стоит человек, Ом; R из - сопротивление изоляции одной фазы сети относительно земли, Ом; R з - сопротивление заземления нейтрали, Ом.

В расчетах сопротивление резиновой обуви принимают не менее 5 10 4 Ом, сухого пола из


кирпича - не менее 11 10 6 Ом-м, линолеума - не менее 2 10 6 Ом-м, дубового паркета - не менее 1,7 10 6 Ом-м, бетона - не менее 0,6 10 6 Ом-м, изоляции проводов относительно земли - не менее 0,6 10 6 Ом. Мокрые полы имеют сопротивление во много раз меньше.

При двухфазном включении (рис. 1.3) сила тока, протекающего через тело человека,

Где U л и U ф - линейное и фазное напряжение сети, В; R , од - сопротивление одежды, Ом.

Рис. 1.3. Прикосновение человека к двум фазам трехфазной сети с линейным напряжением 220 В с изолированной нейтралью:

Сопротивление одежды учитывается только в том случае, если человек прикоснулся к токоведущей части участком тела, защищенным одеждой.

При одновременном касании к обеим фазам через одежду это сопротивление удваивается. Электрическое сопротивление одежды зависит от вида и влажности ткани. Для хлопчатобумажной ткани при площади электрода 100 см 2 она составляет:



для сухой ткани 10... 15 кОм,

для влажной 0,5... 1 кОм.

При наиболее неблагоприятных условиях (касание токоведущих частей оголенными участками тела с поврежденной кожей) ток, проходящий через тело человека, может достигать силы 380 мА.

ЛАБОРАТОРНАЯ РАБОТА № 8

Исследование сопротивления заземляющих

устройств

    КРАТКОЕ ОПИСАНИЕ РАБОТЫ

1.1. Целевая установка. Измерить сопротивление заземления нулевого провода учебного корпуса, определить сопротивление грунта, изучить методику расчета сопротивления заземляющего устройства.

1.2. Материальное обеспечение. Штатное заземление нулевого провода учебного корпуса, измерители сопротивления заземлений МС-08, М-416, Ф4103-М1, зонд и вспомогательный заземлитель.

1.3. Теоретическая часть. В электрическом снабжении береговых предприятий и судов широко применяются трехфазные электрические сети переменного тока. Поражение человека при случайном прикосновении к токоведущим частям электрической сети зависит от схемы прикосновения человека, напряжения сети, схемы самой сети, режима нейтрали. качества изоляции токоведущих частей от земли, емкости токоведущих частей относительно земли и т.д.

Схемы прикосновения человека к сети могут быть различными, однако наиболее характерными являются схемы двухфазного и однофазного прикосновения (см. рис.8.1)

Во всех случаях напряжение прикладывается к цепи человека, куда входят сопротивление тела, обуви, пола или грунта, на котором стоит человек. Та часть напряжения, которая приходится в этой цепи непосредственно на тело человека, называется напряжением прикосновения U h .

Ток, проходящий через тело человека, равен

(8.1)

Рис. 8.1. Схема прикосновения человека к токоведущим частям

трехфазной сети

а - двухфазное прикосновение; б, в - однофазное прикосновение;

Z A , Z B , Z C - полное сопротивление проводов относительно земли.

где R h - сопротивление человека - нелинейная величина, зависящая от многих факторов.

При переменном токе частотой 50 Гц опасной для человека является сила тока более 10 мА.

Наибольшую опасность представляет двухфазное прикосновение, так как в этом случае напряжение прикосновения равно линейному напряжению сети, а ток, проходящий через человека


(8.2)

где U л - линейное напряжение сети, В;

U ф - фазное напряжение сети, В.

Такие случаи прикосновения на практике сравнительно редки, чаще происходит случайное прикосновение человека к одной фазе трехфазной сети. Это может иметь место, например, при прикосновении к нетоковедущим частям электроустановок (корпуса электрооборудования, оболочки кабелей и т.д.), оказавшимся под напряжением в результате повреждения изоляции. В этом случае, если человек стоит на земле, цепь тока замыкается через землю, причем величина тока, проходящего через человека, зависит от режима нейтрали сети, сопротивления изоляции и емкости фаз относительно земли. Нейтраль источника питания трехфазной сети может быть изолированной и глухозаземленной.

Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкости сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление. Такие сети обычно применяются на судах.

Сеть с глухозаземленной нейтралью характеризуется тем, что точка источника питания соединена с землей через малое сопротивление R o .

Схемы однофазного прикосновения к токоведущим частям приведены на рис. 8.2.

Рис. 8.2. Однофазное включение человека в сеть

а - с изолированной нейтралью; б - с глухозаземленной нейтралью.

В сетях с изолированной нейтралью цепь тока, протекающего через человека, касающегося фазы, включает сопротивления изоляции и емкости фаз относительно земли (рис.8.2, а). На каждом участке длины кабеля изоляция имеет конечное активное сопротивление r и каждый участок кабеля вместе с землей образует емкость С, которые распределены по всей длине провода. При расчете установившегося тока через тело человека эти распределения проводимости и емкости принимают сосредоточенными.

В общем случае сопротивление изоляции и емкость фаз относительно земли несимметричны r А  r B  r C и С А С В  С С. При равенстве сопротивлений изоляции и емкостей фаз относительно земли, т.е. r A = r B = r C = r и С А = С В =С С = С ток, проходящий через тело человека, случайно прикоснувшегося к фазе А при нормальном режиме работы, равен

, (8.3)

где 1 - коэффициент, учитывающий падение напряжения в дополнительных сопротивлениях (обувь, пол и т.д.);

- полное сопротивление фаз относительно земли. Оно уменьшается с увеличением протяженности сети.

Для обеспечения безопасности сеть с изолированной нейтралью должна иметь высокое сопротивление. В соответствии с «Правилами устройства электроустановок» (ПУЭ) сопротивление изоляции на каждом участке между двумя последовательно установленными предохранителями или за последним предохранителем в сетях напряжением до 1000 В должно быть не ниже 0,5 МОм на фазу. Для судовых электрических сетей нормы сопротивления изоляции рассчитываются в соответствии с ГОСТ 5.6016 «Методика расчета норм сопротивления изоляции судовых электрических сетей» в зависимости от количества электротехнических изделий, имеющих между собой электрическую связь во время измерения.

В процессе эксплуатации под действием влаги, едких паров, пыли и других факторов сопротивление изоляции снижается. Ее состояние должно периодически контролироваться, например, с помощью мегаомметра М-110. Для судовых сетей снижение сопротивления изоляции ниже 0,75 нормы не допускается. Емкостные токи утечки компенсируют включением индуктивности в нейтраль.

В городских разветвленных сетях с большим числом потребителей сопротивление изоляции вследствие воздействия различных случайных причин мало, а емкость, наоборот, велика. То есть сопротивление фазы относительно земли намного меньше сопротивления человека Z < R h .