Формулы сокращенного вычитания. Формулы сокращенного умножения

На данном уроке мы познакомимся с формулами квадрата суммы и квадрата разности и выведем их. Формулу квадрата суммы докажем геометрически. Кроме того, решим много различных примеров с применением этих формул.

Рассмотрим формулу квадрата суммы:

Итак, мы вывели формулу квадрата суммы:

Словесно эта формула выражается так: квадрат суммы равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.

Данную формулу легко представить геометрически.

Рассмотрим квадрат со стороной :

Площадь квадрата.

С другой стороны, этот же квадрат можно представить иначе, разбив сторону на а и b (рис. 1).

Рис. 1. Квадрат

Тогда площадь квадрата можно представить в виде суммы площадей:

Поскольку квадраты были одинаковы, то их площади равны, значит:

Итак, мы доказали геометрически формулу квадрата суммы.

Рассмотрим примеры:

Комментарий: пример решен с применением формулы квадрата суммы.

Выведем формулу квадрата разности:

Итак, мы вывели формулу квадрата разности:

Словесно эта формула выражается так: квадрат разности равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа.

Рассмотрим примеры:

Формулы квадрата суммы и квадрата разности могут работать как слева направо, так и справа налево. При использовании слева направо это будут формулы сокращенного умножения, они применяются при вычислении и преобразовании примеров. А при использовании справа налево - формулы разложения на множители.

Рассмотрим примеры, в которых нужно разложить заданный многочлен на множители, применяя формулы квадрата суммы и квадрата разности. Для этого нужно очень внимательно посмотреть на многочлен и определить, как именно его правильно разложить.

Комментарий: для того, чтобы разложить многочлен на множители, нужно определить, что представлено в данном выражении. Итак, мы видим квадрат и квадрат единицы. Теперь нужно найти удвоенное произведение - это . Итак, все необходимые элементы есть, нужно только определить, это квадрат суммы или разности. Перед удвоенным произведением стоит знак плюс, значит, перед нами квадрат суммы.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Формулы сокращённого умножения позволяют производить тождественные преобразования выражений - многочленов. С их помощью многочлены можно разложить на множители, а применяя формулы в обратном порядке - представлять произведения двучленов, квадраты и кубы в виде многочленов. Рассмотрим все общепринятые формулы сокращённого умножения, их вывод, распространённые задачи на тождественные преобразования выражений с помощью этих формул, а также домашние задания (ответы к ним открываются по ссылкам).

Квадрат суммы

Формулой квадрата суммы называется равенство

(квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа).

Вместо a и b в эту формулу могут быть подставлены любые числа.

Формула квадрата суммы часто применяется для упрощения вычислений. Например,

С помощью формулы квадрата суммы многочлен можно разложить на множители, а именно, представить в виде произведения двух одинаковых множителей .

Пример 1.

.

Пример 2. Записать в виде многочлена выражение

Решение. По формуле квадрата суммы получаем

Квадрат разности

Формулой квадрата разности называется равенство

(квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа).

Формула квадрата разности часто применяется для упрощения вычислений. Например,

С помощью формулы квадрата разности многочлен можно разложить на множители, а именно, представить в виде произведения двух одинаковых множителей .

Формула следует из правила умножения многчлена на многочлен:

Пример 5. Записать в виде многочлена выражение

Решение. По формуле квадрата разности получаем

.

Применить формулу сокращённого умножения самостоятельно, а затем посмотреть решение

Выделение полного квадрата

Часто в многочлене второй степени содержится квадрат суммы или разности, но содержится в скрытом виде. Чтобы получить полный квадрат в явном виде, нужно преобразовать многочлен. Для этого, как правило, одно из слагаемых многочлена представляется в виде удвоенного произведения, а затем к многочлену прибавляется и из него вычитается одно и то же число.

Пример 7.

Решение. Этот многочлен можно преобразовать следующим образом:

Здесь мы представили 5x в виде удвоенного произведения 5/2 на x , прибавили к многочлену и вычли из него одно и то же число , далее применили формулу квадрата суммы для двучлена .

Итак, мы доказали равенство

,

равен полному квадрату плюс число .

Пример 8. Рассмотрим многочлен второй степени

Решение. Проведём над ним следующие преобразования:

Здесь мы представили 8x в виде удвоенного произведения x на 4 , прибавили к многочлену и вычли из него одно и то же число 4² , применили формулу квадрата разности для двучлена x − 4 .

Итак, мы доказали равенство

,

показывающее, что многочлен второй степени

равен полному квадрату плюс число −16 .

Применить формулу сокращённого умножения самостоятельно, а затем посмотреть решение

Куб суммы

Формулой куба суммы называется равенство

(куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго и плюс куб второго числа).

Формула куба суммы выводится так:

Пример 10. Записать в виде многочлена выражение

Решение. По формуле куба суммы получаем

Применить формулу сокращённого умножения самостоятельно, а затем посмотреть решение

Куб разности

Формулой куба разности называется равенство

(куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго минус куб второго числа).

С помощью формулы куба суммы многочлен можно разложить на множители, а именно, представить в виде произведения трёх одинаковых множителей .

Формула куба разности выводится так:

Пример 12. Записать в виде многочлена выражение

Решение. По формуле куба разности получаем

Применить формулу сокращённого умножения самостоятельно, а затем посмотреть решение

Разность квадратов

Формулой разности квадратов называется равенство

(разность квадратов двух чисел равна произведению суммы эти чисел на их разность).

С помощью формулы куба суммы любой многочлен вида можно разложить на множители.

Доказательство формулы получено с применением правила умножения многочленов:

Пример 14. Записать в виде многочлена произведение

.

Решение. По формуле разности квадратов получаем

Пример 15. Разложить на множители

Решение. Это выражение в явной форме ни под одно тождество не подходит. Но число 16 можно представить в виде степени с основанием 4: 16=4² . Тогда исходное выражение примет иной вид:

,

а это уже формула разности квадратов, и, применив эту формулу, получим

Для того что бы упростить алгебраические многочлены, существуют формулы сокращенного умножения . Их не так уж и много и они легко запоминаются, а запомнить их нужно. Обозначения которые используются в формулах, могут принимать любой вид (число или многочлен).

Первая формула сокращенного умножения называется разность квадратов . Она заключается в том что из квадрата одного числа отнимается квадрат второго числа равен величине разности данных чисел, а также их произведению.

а 2 - b 2 = (а - b)(a + b)

Разберем для наглядности:

22 2 - 4 2 = (22-4)(22+4)=18 * 26 = 468
9а 2 - 4b 2 c 2 = (3a - 2bc)(3a + 2bc)

Вторая формула о сумме квадратов . Звучит она как, сумма двух величин в квадрате равняется квадрату первой величины к ней прибавляется двойное произведение первой величины умноженное на вторую, к ним прибавляется квадрат второй величины.

(а + b) 2 = a 2 +2ab + b 2

Благодаря данной формуле, становится намного проще вычислять квадрат от большого числа, без использования вычислительной техники.

Так к примеру: квадрат от 112 будет равен
1) В начале разберем 112 на числа квадраты которых нам знакомы
112 = 100 + 12
2) Вписываем полученное в скобки возведенные в квадрат
112 2 = (100+12) 2
3) Применяя формулу, получаем:
112 2 = (100+12) 2 = 100 2 + 2 * 100 * 12 + 122 = 10000 + 2400+ 144 = 12544

Третья формула это квадрат разности . Которая гласит о том, что две вычитаемые друг друга величины в квадрате равняются, тому что, от первой величины в квадрате отнимаем двойное произведение первой величины умноженное на вторую, прибавляя к ним квадрат второй величины.

(а +b) 2 = а 2 - 2аb + b 2

где (а - b) 2 равняется (b - а) 2 . В доказательство чему, (а-b) 2 = а 2 -2аb+b 2 = b 2 -2аb + а 2 = (b-а) 2

Четвертая формула сокращенного умножения называется куб суммы . Которая звучит как: две слагаемые величины в кубе равны кубу 1 величины прибавляется тройное произведение 1 величины в квадрате умноженное на 2-ую величину, к ним прибавляется тройное произведение 1 величины умноженной на квадрат 2 величины, плюс вторая величина в кубе.

(а+b) 3 = а 3 + 3а 2 b + 3аb 2 + b 3

Пятая, как вы уже поняли называется куб разности . Которая находит разности между величинами, как от первого обозначения в кубе отнимаем тройное произведение первого обозначения в квадрате умноженное на второе, к ним прибавляется тройное произведение первого обозначения умноженной на квадрат второго обозначения, минус второе обозначение в кубе.

(а-b) 3 = а 3 - 3а 2 b + 3аb 2 - b 3

Шестая называется - сумма кубов . Сумма кубов равняется произведению двух слагаемых величин, умноженных на неполный квадрат разности, так как в середине нет удвоенного значения.

а 3 + b 3 = (а+b)(а 2 -аb+b 2)

По другому можно сказать сумму кубов можно назвать произведение в двух скобках.

Седьмая и заключительная, называется разность кубов (ее легко перепутать с формулой куба разности, но это разные вещи). Разность кубов равняется произведению от разности двух величин, умноженных на неполный квадрат суммы, так как в середине нет удвоенного значения.

а 3 - b 3 = (а-b)(а 2 +аb+b 2)

И так формул сокращенного умножения всего 7, они похожи друг на друга и легко запоминаются, единственно важно не путаться в знаках. Они так же рассчитаны на то, что их можно использовать в обратном порядке и в учебниках собрано довольно много таких заданий. Будьте внимательны и все у вас получится.

Если у вас появились вопросы по формулам, обязательно пишите их в комментариях. Будем рады ответить вам!

Если Вы находитесь в декретном отпуске, но хотите зарабатывать деньги. Просто перейдите по ссылке Интернет бизнес с Орифлейм . Там все очень подробно написано и показано. Будет интересно!

При и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.

Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это , и привести подобные слагаемые. Получаем:

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример . Раскрыть скобки: \((x+5)^2\)
Решение :


Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:


Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите и тему .

Пример . Преобразуйте выражение \((1+5x)^2-12x-1 \) в стандартного вида.

Решение :

Ответ: \(25x^2-2x\).

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример . Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.

Решение :

Ответ: \(250 000\).

Квадрат разности

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):

В более краткой записи имеем:

Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)

Применяется она также, как и предыдущая.

Пример . Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac{17}{8}\).

Решение :

Ответ: \(8\).

Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

Получили формулу:

Разность квадратов \(a^2-b^2=(a+b)(a-b)\)

Эта формула одна из наиболее часто применяемых при и работе с .

Пример . Сократите дробь \(\frac{x^2-9}{x-3}\) .

Решение :

Ответ: \(x+3\).

Пример .Разложите на множители \(25x^4-m^{10} t^6\).
Решение :

Это три основные формулы, знать которые нужно обязательно ! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

Пример (повышенной сложности!) .Сократите дробь .
Решение :

\(\frac{x^2-4xy-9+4y^2}{x-2y+3}\) \(=\)

На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).

\(\frac{(x^2-4xy+4y^2)-9}{x-2y+3}\) \(=\)

Теперь немного преобразуем слагаемые в скобке:
\(4xy\) запишем как \(2·x·2y\),
а \(4y^2\) как \((2y)^2\).

\(\frac{(x^2-4xy+(2y)^2)-9}{x-2y+3}\) \(=\)

Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате.

\(\frac{(x-2y)^2-3^2}{x-2y+3}\) \(=\)

Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок.

\(\frac{(x-2y-3)(x-2y+3)}{x-2y+3}\) \(=\)

И вот теперь сокращаем вторую скобку числителя и весь знаменатель.

Готов ответ.