Свойства алкенов и их применение. Конспект урока "Алкены: свойства, получение и применение"

Углеводородной природы, имеющие в своей структуре одну двойную связь. К ним относятся этилен, пропилен, бутилен, изобутилен, пентен, гексен, гептен и другие. Применение алкенов характерно для многих областей промышленности, а также для народного хозяйства.

Ввиду высокой химической активности соединений с двойной связью, они широко применяются в качестве сырья для химической промышленности. Рассмотрим применение алкенов на примере стоящий в начале алкенов, используется для который, в свою очередь, используется для производства синтетического волокна лавсана, антифризов, Важное место в применении играет полимеризация этилена. Она проходит при высокой температуре и давлении. Полимеризуясь, этилен образует полиэтилен, который используется как основа для производства пластических масс, синтетических каучуков и топлива. Полиэтилен с короткими макромолекулами является жидким смазочным материалом. Если число звеньев в молекуле полиэтилена составляет 1,5-3 тысячи, то из него можно изготавливать пакеты, пленку, бутылки, пластиковую посуду. При увеличении длины цепи до пяти-шести тысяч полиэтилен становится твердым, прочным материалом, из которого изготавливают трубы, фитинги.

Из других алкенов также путем полимеризации получают синтетические волокна. Высокими прочностными свойствами обладает полипропилен, получаемый из пропена.

При взаимодействии этилена с хлороводородом образуется этилхлорид, который используют в медицине для проведения местной анестезии. Применение алкенов также связано с их способностью реагировать с водой, образуя при этом спирты. Так, из этилена в процессе реакции гидратации получается Нашли свое применение в качестве сырья для производства органических соединений, лаков, пластических масс, средств косметической промышленности и окиси алкенов, которые образуются из соединений с двойной связью в процессе окисления их кислородом воздуха. В результате реакции присоединения из алкенов и галогенов получают галогеналканы. Таким образом, из этилена получают дихлорэтан, который используется в качестве сольвента для растворения красок и лаков, обеззараживателя зернохранилищ, почвы, зерна, а также в качестве клея для соединения пластических масс.

Сырьем для этилбензола, стирола и многих других промышленно важных химических соединений также является этилен. Химические свойства его определяют область его применения как основы для получения всех этих веществ. Высокая реакционная способность обусловлена наличием двойной связи. Реакции присоединения в алкенах происходят по двойной связи. В результате идет расщепление π-связи и образование на ее месте двух σ-связей.

Применение алкенов не ограничивается их использованием в качестве сырья для получения огромного числа соединений. Например, этилен применяют в овощехранилищах и в теплицах для ускорения созревания фруктов и овощей, а также как регулятор роста растений.

В органической химии можно встретить углеводородные вещества с разным количеством углерода в цепи и C=C-связью. Они являются гомологами и называются алкенами. Из-за своего строения они химически более активны, чем алканы. Но какие именно реакции для них характерны? Рассмотрим их распространение в природе, разные способы получения и применение.

Что из себя представляют?

Алкены, которые также называются олефинами (маслянистые) получили свое название от этен-хлорида, производного первого представителя этой группы. У всех алкенов есть хотя бы одна двойная C=C-связь. C n H 2n - формула всех олефинов, а название образовывается от алкана с таким же количеством углеродов в молекуле, только суффикс -ан меняется на -ен. Арабской цифрой в конце названия через дефис обозначают номер углерода, от которого начинается двойная связь. Рассмотрим основные алкены, таблица поможет вам запомнить их:

Если молекулы имеют простое неразветвленное строение, то добавляют суффикс -илен, это также отражено в таблице.

Где их можно встретить?

Так как реакционная способность алкенов весьма высока, их представители в природе встречаются крайне редко. Принцип жизни молекулы олефинов — "давай дружить". Нет вокруг других веществ — не беда, будем дружить между собой, образуя полимеры.

Но они есть, и небольшое количество представителей входит в состав сопутствующего нефтяного газа, а высших — в нефти, добываемой на территории Канады.

Самый первый представитель алкенов этен — это гормон, стимулирующий созревание плодов, поэтому его в небольших количествах синтезируют представители флоры. Есть алкен цис-9-трикозен, который у самок мухи домашней играет роль полового аттрактанта. Еще его называют мускалур. (Аттрактант — вещества природного или синтетического происхождения, которое вызывает влечение к источнику запаха у другого организма). С точки зрения химии, алкен этот выглядит так:

Так как весьма ценным сырьем являются все алкены, способы получения их искусственным путем весьма разнообразны. Рассмотрим наиболее распространенные.

А если нужно много?

В промышленности класс алкенов, в основном, получается при крекинге, т.е. расщеплении молекулы под воздействием высоких температур, высших алканов. Для реакции необходим нагрев в диапазоне от 400 до 700 °C. Расщепляется алкан так, как ему захочется, образуя алкены, способы получения которых мы рассматриваем, с большим количеством вариантов строения молекул:

C 7 H 16 -> CH 3 -CH=CH 2 + C 4 H 10.

Еще один распространенный способ называется дегидрирование, при котором от представителя ряда алкана в присутствии катализатора отделяют молекулу водорода.

В лабораторных условиях алкены и способы получения отличаются, они основаны на реакциях элиминирования (отщепления группы атомов без их замещения). Чаще всего элиминируются атомы воды из спиртов, галогены, водород или галогенводород. Наиболее распространенный способ получения алкенов — из спиртов в присутствии кислоты, как катализатора. Возможно использование и других катализаторов

Все реакции элиминирования подчинены правилу Зайцева, гласящему:

Атом водорода отщепляется от того углерода, соседствующего с углеродом, несущим группу -OH, у которого меньше водородов.

Применив правило, ответьте, какой продукт реакции будет преобладать? Позже вы узнаете, правильно ли ответили.

Химические свойства

Алкены активно реагируют с веществами, разрывая свою пи-связь (еще одно название связи C=C). Ведь она не такая прочная, как одинарная (сигма-связь). Углеводород из ненасыщенного превращается в насыщенный, не образуя других веществ после реакции (присоединение).

  • присоединение водорода (гидрирование). Присутствие катализатора и нагревания нужна для ее прохождения;
  • присоединение молекул галогенов (галогенирование). Является одной из качественных реакций на пи-связь. Ведь при реакции алкенов с бромной водой, она из бурой становится прозрачной;
  • реакция с галогенводородами (гидрогалогенирование);
  • присоединение воды (гидратация). Условиями прохождения реакции является нагревание и присутствие катализатора (кислоты);

Реакции несимметричных олефинов с галогенводородами и водой подчиняются правилу Марковникова. А значит, водород присоединится к тому углероду из двойной углерод-углеродной связи, у которого уже больше атомов водорода.

  • горение;
  • неполное окисление каталитическое. Продуктом являются циклические оксиды;
  • реакция Вагнера (окисление перманганатом в нейтральной среде). Эта реакция алкенов — еще одна качественная C=C-связь. При протекании розовый раствор марганцовки обесцвечивается. Если ту же реакцию провести в соединенной кислой среде, продукты будут уже другими (карбоновые кислоты, кетоны, углекислый газ);
  • изомеризация. Характерны все виды: цис- и транс-, перемещение двойной связи, циклизация, скелетная изомеризация;
  • полимеризация — главное свойство олефинов для промышленности.

Применение в медицине

Большое практическое значение имеют продукты реакции алкенов. Многие из них используются в медицине. Из пропена получают глицерин. Этот многоатомный спирт является прекрасным растворителем, причем, если его использовать вместо воды, растворы будут более концентрированными. В медицинских целях в нем растворяют алкалоиды, тимол, йод, бром и др. Также глицерин применяют при приготовлении мазей, паст и кремов. Он предотвращает их высыхание. Сам по себе глицерин является антисептиком.

При реакции с хлороводородом получаются производные, которые применяются как местная анестезия при нанесении на кожу, а также для кратковременного наркоза при незначительных хирургических вмешательствах, при помощи ингаляций.

Алкадиены — это алкены с двумя двойными связями в одной молекуле. Основное их применение — производство синтетического каучука, из которого потом изготавливают различные грелки и спринцовки, зонды и катетеры, перчатки, соски и многое другое, что просто незаменимо при уходе за больными.

Применение в промышленности

Вид промышленности Что применяют Каким образом могут использовать
Сельское хозяйство этен ускоряет созревание овощей и фруктов, дефолиация растений, пленки для теплиц
Лако-красочная этен, бутен, пропен и др. для получения растворителей, эфиров, сольвента
Машиностроение 2-метилпропен, этен производство синтетического каучука, смазочные масла, антифриз
Пищевая промышленность этен

производство тефлона, этилового спирт, уксусная кислота

Химическая промышленность этен, полипропилен получают спирты, полимеры (поливинилхлорид, полиэтилен, поливинилацетат, полиизобтилен, уксусный альдегид
Горная промышленность этен и др. взрывчатые вещества

Более широкое применение нашли алкены и их производные в промышленности. (Где и как используются алкены, таблица выше).

Это лишь малая часть использования алкенов и их производных. С каждым годом потребность в олефинах только возрастает, а значит, возрастает потребность и в их производстве.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Гипермаркет знаний >>Химия >>Химия 10 класс >> Химия: Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины , алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалке-ны), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов - алканов.

Строение

Алкены - ациклические , содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С n Н 2n .

Свое второе название - «олефины» - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел (от англ. oil - масло).

Атомы углерода, между которыми имеется двойная связь, как вы знаете, находятся в состоянии sp 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию а-связи, а за счет негибридизованных -орбиталей соседних молекулы этилена атомов углерода образуется вторая, п -связь. Таким образом, двойная связь состоит из одной Þ- и одной п-связи.

Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие л-связь, располагаются перпендикулярно плоскости молекулы (см. рис. 5).

Двойная связь (0,132 нм) короче одинарной, а ее энергия больше, т. е. она является более прочной. Тем не менее наличие подвижной, легко поляризуемой 7г-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Гомологический ряд этена

Неразветвленные алкены составляют гомологический ряд этена (этилена).

С2Н4 - этен, С3Н6 - пропен, С4Н8 - бутен, С5Н10 - пентен, С6Н12 - гексен и т. д.

Изомерия и номенклатура

Для алкенов, так же как и для алканов, характерна структурная изомерия. Структурные изомеры, как вы помните, отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры , - это бутен.

СН3-СН2-СН=СН2 СН3-С=СН2
l
СН3
бутен-1 метилпропен

Особым видом структурной изомерии является изомерия положения двойной связи:

СН3-СН2-СН=СН2 СН3-СН=СН-СН3
бутен-1 бутен-2

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис-транс-изомерии.

Цис-изомеры отличаются от торакс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости п -связи, а следовательно, и свойствами.

Алкены изомерны циклоалканам (межклассовая изомерия), например:

сн2=сн-сн2-сн2-сн2-сн3
гексен-1 циклогексан

Номенклатура алкенов , разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи

Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения

сн3-сн-сн2-сн=сн-сн3 сн3

5-метилгексен-2, а не 2-метилгексен-4, как можно было бы предположить.

Если по расположению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

CH3- CH2-CH=CH-СН-СН3
l
СН3
2-метилгексен-З

3. Формирование названия

Названия алкенов формируются так же, как и названия ал-канов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс , обозначающий принадлежность соединения к классу алкенов, -ен.

Получение

1. Крекинг нефтепродуктов. В процессе термического крекинга предельных углеводородов наряду с образованием алка-нов происходит образование алкенов.

2. Дегидрирование предельных углеводородов. При пропускании алканов над катализатором при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

3. Дегидратация спиртов (отщепление воды). Воздействие водоотнимающих средств (Н2804, Аl203) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:

Эту реакцию называют внутримолекулярной дегидратацией (в отличие от межмолекулярной дегидратации, которая приводит к образованию простых эфиров и будет изучена в § 16 «Спирты»).

4. Дегидрогалогенирование (отщепление галогеноводорода).

При взаимодействии галогеналкана со щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода.

Обратите внимание, что в результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева:

При отщеплении галогеноводорода от вторичных и третичных галогеналканов атом водорода отщепляется от наименее гидрированного атома углерода.

5. Дегалогенирование. При действии цинка на дибромпроиз-водное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:

Физические свойства

Первые три представителя гомологического ряда алкенов - газы, вещества состава С5Н10-С16Н32 - жидкости, высшие алкены - твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства

Реакции присоединения

Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования - металлов - платины, палладия, никеля:

CH3-СН2-СН=СН2 + Н2 -> CH3-CH2-СН2-СН3

Эта реакция протекает и при атмосферном и при повышенном давлении и не требует высокой температуры, так как является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.

Марковников Владимир Васильевич

(1837-1904)

Русский химик-органик. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения. Исследовал (с 1880 г.) состав нефти, заложил основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ - цикло-парафины (нафтены).

3. Гидрогалогенирование (присоединение галогеноводорода).

Реакция присоединения галогеноводорода более подробно будет рассмотрена ниже. Эта реакция подчиняется правилу Марковникова:

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.

4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

CH2=CH2 + H2O -> СН3-СН2ОН
этен этанол

Обратите внимание на то, что первичный спирт (с гидроксигруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция также протекает в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксигруппа - к менее гидрированному.

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободноради-кальному механизму.

Реакции окисления

Как и любые органические соединения, алкены горят в кислороде с образованием С02 и Н20.

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь.

Как вы уже знаете, непредельные углеводороды - алкены способны вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Электрофильное присоединение

Электрофильные реакции - это реакции, протекающие под действием электрофилов - частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь. Простейшей электрофильной частицей является катион водорода. Известно, что атом водорода имеет один электрон на З-в-орбитали. Катион водорода образуется, когда атом теряет этот электрон, таким образом, у катиона водорода вообще отсутствуют электроны:

Н· - 1е - -> Н +

При этом катион имеет достаточно высокое сродство к электрону. Сочетание этих факторов делает катион водорода достаточно сильной электрофильной частицей.

Образование катиона водорода возможно при электролитической диссоциации кислот:

НВr -> Н + + Вr -

Именно по этой причине многие электрофильные реакции идут в присутствии и с участием кислот.

Электрофильные частицы, как уже говорилось раньше, действуют на системы, содержащие области повышенной электронной плотности. Примером такой системы может являться кратная (двойная или тройная) углерод-углеродная связь.

Вы уже знаете, что атомы углерода, между которыми образована двойная связь, находятся в состоянии sр 2 -гибридизации. Негибри-дизованные р-орбитали соседних атомов углерода, находящиеся в одной плоскости, перекрываются, образуя п -связь, которая менее прочна, чем Þ-связь, и, что наиболее существенно, легко поляризуется под действием внешнего электрического поля. Это означает, что при приближении положительно заряженной частицы электроны тс-связи смещаются в ее сторону и образуется так называемый п- комплекс.

Получается п -комплекс и при присоединении катиона водорода к п -связи. Катион водорода как бы натыкается на выступающую из плоскости молекулы электронную плотность п -связи и присоединяется к ней.

На следующей стадии происходит полное смещение электронной пары п -связи к одному из атомов углерода, что приводит к появлению на нем неподеленной пары электронов. Орбиталь атома углерода, на которой находится эта пара, и незаполненная орбиталь катиона водорода перекрываются, что приводит к образованию ковалентной связи по донорно-акцепторному механизму. У второго атома углерода при этом остается незаполненная орбиталь, т. е. положительный заряд.

Образовавшаяся частица называется карбокатионом, так как она содержит положительный заряд на атоме углерода. Эта частица может соединиться с каким-либо анионом, частицей, имеющей неподеленную электронную пару, т. е. нуклеофилом.

Рассмотрим механизм реакции электрофильного присоединения на примере гидробромирования (присоединения бромоводорода) этена:

СН2= СН2 + НВг --> СНВr-СН3

Реакция начинается с образования электрофильной частицы - катиона водорода, которое происходит в результате диссоциации молекулы бромоводорода.

Катион водорода атакует п -связь, образуя п -комплекс, который быстро преобразуется в карбокатион:

Теперь рассмотрим более сложный случай.

Реакция присоединения бромоводорода к этену протекает однозначно, а взаимодействие бромоводорода с пропеном теоретически может дать два продукта: 1-бромпропан и 2-бромпропан. Данные эксперимента показывают, что в основном получается 2-бромпропан.

Для того чтобы объяснить это, нам придется рассмотреть промежуточную частицу - карбокатион.

Присоединение катиона водорода к пропену может привести к образованию двух карбокатионов: если катион водорода присоединится к первому атому углерода, к атому, который находится на конце цепи, то положительный заряд окажется у второго, т. е. в центре молекулы (1); если присоединится ко второму, то положительный заряд окажется у первого атома (2).

Преимущественное направление реакции будет зависеть от того, какого карбокатиона окажется больше в реакционной среде, что, в свою очередь, определяется устойчивостью карбокатиона. Эксперимент показывает преимущественное образование 2-бромпропа-на. Это означает, что в большей степени происходит образование карбокатиона (1) с положительным зарядом на центральном атоме.

Большая устойчивость этого карбокатиона объясняется тем, что положительный заряд на центральном атоме углерода компенсируется положительным индуктивным эффектом двух метильных групп, суммарный эффект которых выше, чем +/-эффект одной этильной группы:

Закономерности реакций гидрогалогенирования алкенов были изучены известным русским химиком В. В. Марковниковым, учеником А. М. Бутлерова , который, как это уже было сказано выше, сформулировал правило, носящее его имя.

Это правило было установлено эмпирически, т. е. опытным путем. В настоящее время мы можем привести вполне убедительное его объяснение.

Интересно, что правилу Марковникова подчиняются и другие реакции электрофильного присоединения, поэтому будет правильно сформулировать его в более общем виде.

В реакциях электрофильного присоединения электрофил (частица с незаполненной орбиталью) присоединяется к более гидрированному атому углерода, а нуклеофил (частица с неподеленной парой электронов) - к менее гидрированному.

Полимеризация

Особым случаем реакции присоединения является реакция полимеризации алкенов и их производных. Эта реакция протекает по механизму свободнорадикального присоединения:

Полимеризацию проводят в присутствии инициаторов - пере-кисных соединений, которые являются источником свободных радикалов. Перекисными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является перекись водорода НООН.

При температуре 100 °С и давлении 100 МПа происходит гомо-лиз неустойчивой кислород-кислородной связи и образование радикалов - инициаторов полимеризации. Под действием радикалов КО- происходит инициирование полимеризации, которая развивается как реакция свободнорадикального присоединения. Рост цепи прекращается, когда в реакционной смеси происходит рекомбинация радикалов - полимерной цепи и радикалов или КОСН2СН2-.

При помощи реакции свободнорадикальной полимеризации веществ, содержащих двойную связь, получают большое количество высокомолекулярных соединений:

Применение алкенов с различными заместителями дает возможность синтезировать богатый ассортимент полимерных материалов с широким набором свойств.

Все эти полимерные соединения находят широкое применение в самых разных областях человеческой деятельности - промышленности, медицине, используются для изготовления оборудования биохимических лабораторий, некоторые являются полупродуктами для синтеза других высокомолекулярных соединений.

Окисление

Вы уже знаете, что в нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов). В кислой среде (подкисленный серной кислотой раствор) происходит полное разрушение двойной связи и превращение атомов углерода, между которыми существовала двойная связь, в атомы углерода карбоксильной группы:

Деструктивное окисление алкенов можно применять для определения их структуры. Так, например, если при окислении некоторого алкена получены уксусная и пропионовая кислоты, это означает, что окислению подвергся пентен-2, а если получены масляная (бутановая) кислота и углекислый газ, то исходный углеводород - пентен-1.

Применение

Алкены широко используются в химической промышленности как сырье для получения разнообразных органических веществ и материалов.

Так, например, этен является исходным веществом для производства этанола, этиленгликоля, эпоксидов, дихлорэтана.

Большое количество этена перерабатывается в полиэтилен, который используется для изготовления упаковочной пленки, посуды, труб, электроизоляционных материалов.

Из пропена получают глицерин, ацетон, изопропанол, растворители. Полимеризацией пропена получают полипропилен, который по многим показателям превосходит полиэтилен: имеет более высокую температуру плавления, химическую устойчивость.

В настоящее время из полимеров - аналогов полиэтилена производят волокна, обладающие уникальными свойствами. Так, например, волокно из полипропилена прочнее всех известных синтетических волокон.

Материалы, изготовленные из этих волокон, являются перспективными и находят все большее применение в разных областях человеческой деятельности.

1. Какие виды изомерии характерны для алкенов? Напишите формулы возможных изомеров пентена-1.
2. Из каких соединений может быть получен: а) изобутен (2-метилпропен); б) бутен-2; в) бутен-1? Напишите уравнения соответствующих реакций.
3. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В. 4. Предложите способ получения 2-хлорпропана из 1-хлор-пропана. Напишите уравнения соответствующих реакций.
5. Предложите способ очистки этана от примесей этилена. Напишите уравнения соответствующих реакций.
6. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.
7. На полное гидрирование 2,8 г алкена израсходовано 0,896 л водорода (н. у.). Какова молекулярная масса и структурная формула этого соединения, имеющего нормальную цепь углеродных атомов?
8. Какой газ находится в цилиндре (этен или пропен), если известно, что на полное сгорание 20 см3 этого газа потребовалось 90 см3 (н. у.) кислорода?
9*. При реакции алкена с хлором в темноте образуется 25,4 г дихлорида, а при реакции этого алкена той же массы с бромом в тетрахлорметане - 43,2 г дибромида. Установите все возможные структурные формулы исходного алкена.

История открытия

Из вышеизложенного материала мы с вами уже поняли, что этилен является родоначальником гомологического ряда непредельных углеводородов, имеющий одну двойную связь. Их формула C n H 2n и носят они название алкенов.

Немецкому врачу и химику Бехеру в 1669 году впервые удалось получить этилен путем воздействия серной кислоты на этиловый спирт. Бехер установил, что этилен является, более химически активным, чем метан. Но, на жаль, в то время, полученный газ ученый идентифицировать не смог, поэтому и названия ему никакого не присвоил.

Немного позже таким же способом получения этилена воспользовался и голландские химики. А так как при взаимодействии с хлором он имел свойство образовывать маслянистуюю жидкость, то соответственно и получил название «маслородного газа». Позднее стало известно, что эта жидкость является дихлорэтаном.

Во французском языке термин «маслородный» звучит, как oléfiant. А после того, как были обнаружены и другие углеводороды подобного типа, то Антуан Фуркруа,французский химик и ученый, ввел новый термин, который стал общим для всего класса олефинов или алкенов.

Но уже в начале девятнадцатого века французским химиком Ж. Гей-Люссаком было доведено, что этанол состоит не только из «маслородного» газа, но и воды. Кроме того, такой же газ был обнаружен и в хлористом этиле.

И хотя химики и определили, что этилен состоит из водорода и углерода, и уже знали состав веществ, но найти его настоящую формулу еще долго не могли. И лишь в 1862 году Э.Эрленмейеру удалось доказать наличие в молекуле этилена двойной связи. Это признал и российский ученый А. М. Бутлеров и подтвердил правильность такой точки зрения экспериментально.

Нахождение в природе и физиологическая роль алкенов

Многих интересует вопрос, где в природе можно встретить алкены. Так вот, оказывается, что в природе они практически не встречаются, так как простейший его представитель этилен является гормоном для растений и лишь в незначительном количестве в них синтезируется.

Правда в природе существует такой алкен, как мускалур. Этот один из природных алкенов является половым аттрактантом самки домашней мухи.

Стоит обратить внимание на то, что, имея, высокую концентрацию низшие алкены обладают наркотическим эффектом, которые способны вызывать судороги и раздражение слизистых.

Применение алкенов

Жизнь современного общества на сегодняшний день трудно представить без применения полимерных материалов. Так как в отличие от природных материалов, полимеры обладают различными свойствами, они легкие в обработке, да и если смотреть по цене, то они сравнительно дешевы. Еще важным аспектом в пользу полимеров, является то, что многие из них можно вторично перерабатывать.

Алкены свое применение нашли при производстве пластмасс, каучуков, пленок, тефлона, этилового спирта, уксусного альдегида и других органических соединений.



В сельском хозяйстве его применяют, как средство, которое ускоряет процесс созревания фруктов. Для получения различных полимеров и спиртов используют пропилен и бутилены. А вот в производстве синтетического каучука используют изобутилен. Поэтому можно сделать вывод, что без алкенов не обойтись, так как они являются важнейшим химическим сырьем.

Промышленное использование этилена

В промышленных масштабах пропилен, как правило, используют для синтеза полипропилена и для получения изопропанола, глицерина, масляных альдегидов и т.д. С каждым годом потребность в пропилене возрастает.



Значение алкенов в жизни человека Выполнила ученица 10 м класса Чеснокова Инна Проверила учитель химии Домрачева Светлана Алексеевна

O Один из важнейших классов непредельных углеводородов Алкены находит свое применение в различных областях хозяйства. Алкены широко используются в промышленности в качестве сырья для получения материалов и веществ.

Этилен Получение пластмасс – изготовление посуды, труб, пленки (пропилен и бутилены); Получение этанола – растворитель, используется в органическом синтезе; Получение этиленгликоля – антифриз – понижает температуру замерзания; Этилен используется для повышения урожайности овощей в теплицах; Алкены используются при производстве синтетического каучука (Изобутилен); Производство уксусной кислоты.

Применение этилена: Этиленгликоль Этилен и его гомологи легко окисляются, например перманганатом калия. При этом образовался этиленгликоль - вязкая, сходная с глицерином жидкость применяемая в производстве антифризов, синтетического волокна лавсана, взрывчатых веществ. Этиленгликоль очень ядовит.

O Этилен также используется в Применение этилена: ЭТРЕЛ качестве регулятора роста растений. Ученые установили, что в растениях этилен образуется из аминокислоты – метионина. Это наблюдение и привело к мысли о синтезе такого вещества, которое попадая в растение, разлагалось бы с образованием этилена. Такое вещество было синтезировано в 1946 г. советскими учеными М. И. Кабачником и П. А. Российской и получило название “этрел”. Этрел (Этефон) легко проникает в растения и разлагается с образованием этилена.

Военное значение этилена Этилен и его производные находят широкое применение в военном деле. Этилен применяют для синтеза иприта, отравляющего вещества кожно-нарывного и общеядовитого действия: Впервые иприт был применен Германией как отравляющее вещество в 1917 г. у бельгийского города Ипр (отсюда название) против наступающих англо-французских войск.

Окисление этилена Также этилен частично окисляется в кислороде воздуха (горит): 2 CH 2 = CH 2 + O 2=>2 CH 2 - CH 2 Оксид этилена применяется для синтеза различных органических веществ, производства уксусного альдегида, производства лаков, пластмасс, косметических препаратов, и. т. д.

Этилен При реакции с галогеноводородами получается этилхлорид, применяемый для местной астенезии: H 2 C=CH 2 + HBr=>CH 3 - CH 2 Br Этилен присоединяет воду, и получается этиловый спирт: H 2 C = CH 2 + H 2 O=>CH 3 - CH 2 - OH

Полимеризация этилена Полимеризация. При повышенной температуре, давлении, и в присутствии катализаторов молекулы этилена соединяются друг с другом в следствие разрыва двойной связи, и образуют большие молекулы: n. CH 2 = CH 2=>(- CH 2 -)n В результате образуется полиэтилен из которого получают множество различных пластмасс, высокооктановое горючее, синтетический каучук, и. т. д.