Свободные затухающие колебания. Основные формулы по физике - колебания и волны Затухающие колебания коэффициент затухания

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими .

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r - коэффициент сопротивления среды. Знак минус показывает, что F C направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

- дифференциальное уравнение затухающих колебаний.

Уравнение затухающих колебаний.

ω - частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово-рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А 0 и φ 0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ - время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень-шилась в е раз. Логарифмический декремент затухания - постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Пусть

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

Дифференциальное уравнение вынуж-денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

Тогда

Подставим в (2):

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ - по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

где

(3)

(4)

Слагаемое Х о.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи-ческой системы, называется резонансом .

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ω рез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой . Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

ω рез = ω 0 .

При ω→0 все кривые приходят к значению - статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие "солнышко" за счет изменения положения центра тяжести система.(То же в "лодочках".) См. §61 .т. 1 Савельев И.В.

Автоколебаниями называются такие колебания, энергия которых периодически пополняется в результате воздействия самой системы за счет источника энергии, находящегося в этой же системе. См. §59 т.1 Савельев И.В.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

И получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Затухание колебаний

Свободные колебания в реальных условиях не могут продолжаться вечно. Для механических систем всегда имеет место сопротивление среды, вследствие чего энергия движения объекта рассеивается при трении. В электромагнитных контурах колебания затухают за счет сопротивления проводников.

Уравнение затухающих колебаний

Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме оно записывается следующим образом:

Из этого выражения можно получить еще одну каноническую форму:

Здесь x и t – координаты пространства и времени, А – первоначальная амплитуда. – коэффициент затухания, который зависит от сопротивления среды r и массы колеблющегося объекта m:

Чем больше сопротивление среды, тем больше энергии рассеивается при вязком трении. И наоборот – чем больше масса (а значит, инерционность) тела, тем дольше оно будет продолжать движение.

Циклическая частота свободных колебаний (такой же системы, но без трения) учитывает силу упругости в системе (например, жесткость пружины k):

Строго говоря, в случае затухающих колебаний нельзя говорить про период – время между повторяющимися движениями системы постоянно увеличивается. Однако если колебания затухают медленно, для них с достаточной точностью можно определить период Т:

Циклическая частота затухающих колебаний

Еще одна характеристика затухающих колебаний – циклическая частота:

Время релаксации – это коэффициент, показывающий, за какое время амплитуда колебаний уменьшится в е раз:

Отношение амплитуды изменяющейся величины в двух последовательных периодах называют декрементом затухания:

Эту же характеристику при расчетах часто представляют в виде логарифма:

Добротность Q характеризует, насколько силы упругости системы превышают силы сопротивления среды, препятствуя диссипации энергии:

Примеры решения задач

ПРИМЕР 1

Задание После того, как к пружине подвесили груз, она растянулась на 9,8 см. Пружина колеблется в вертикальном направлении, . Определить период колебаний.
Решение Так как пружина растягивается под весом, то на нее действует сила тяжести:

Силе тяжести противодействует сила упругости пружины:

Из двух выражений найдём коэффициент упругости:

Подставим коэффициент упругости в формулу для периода затухающих колебаний:

Зная, что логарифмический декремент затухания выразим из него неизвестную величину , подставим в знаменатель формулы и выразим Т:

Ответ

ОБЩИЕ СВЕДЕНИЯ

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания называются свободными , если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему. Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса.

Дифференциальное уравнение гармонических колебаний имеет вид:

где - колеблющаяся величина, - циклическая частота.

- решение этого уравнения. Здесь - амплитуда , - начальная фаза.

Фаза колебаний.

Амплитуда - максимальное значение колеблющейся величины.

Период колебаний - промежуток времени, через который происходит повторение движения тела. Фаза колебания за период получает приращение . . , - число колебаний.

Частота колебаний - число полных колебаний, совершаемых в единицу времени. . . Измеряется в герцах (Гц).

Циклическая частота - число колебаний, совершаемых за секунд. . Единица измерения .

Фаза колебаний - величина, стоящая под знаком косинуса и характеризующая состояние колебательной системы в любой момент времени.

Начальная фаза - фаза колебаний в начальный момент времени. Фаза и начальная фаза измеряются в радианах ().

Свободные затухающие колебания - колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

- логарифмическим декрементом затухания .

Величина N e - это число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания - постоянная величина для данной колебательной системы.

Для характеристики колебательной системы используют понятие добротности Q , которая при малых значениях логарифмического декремента равна

.

Добротность пропорциональна числу колебаний, совершаемых системой за время релаксации.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ С ПОМОЩЬЮ НАКЛОННОГО МАЯТНИКА

Теоретическое обоснование методики определения коэффициентатрения

Наклонный маятник представляет собой шар, подвешенный на длинной нити и лежащий на наклонной плоскости.

Если шар отвести из положения равновесия (ось OO 1) на угол a, а затем отпустить, то возникнут колебания маятника. При этом шар будет кататься по наклонной плоскости около положения равновесия (рис. 1, а). Между шаром и наклонной плоскостью будет действовать сила трения качения. В результате колебания маятника будут постепенно затухать, то есть будет наблюдаться уменьшение во времени амплитуды колебаний.

Можно предположить, что по величине затухания колебаний могут быть определены сила трения и коэффициент трения качения.

Выведем формулу, которая связывает уменьшение амплитуды колебаний с коэффициентом трения качения m.При качении шара по плоскости сила трения совершает работу. Эта работа уменьшает полную энергию шара. Полная энергия складывается из кинетической и потенциальной энергий. В тех положениях, где маятник максимально отклонен от положения равновесия, его скорость, а следовательно, и кинетическая энергия равны нулю.

Эти точки называются точками поворота. В них маятник останавливается, поворачивается и движется обратно. В момент поворота энергия маятника равна потенциальной энергии, поэтому уменьшение потенциальной энергии маятника при его движении от одной точки поворота до другой равна работе силы трения на пути между точками поворота.

Пусть А - точка поворота (рис. 1, а). В этом положении нить маятника составляет угол a с осью OO 1 .Если бы трения не было, то через половину периода маятник оказался бы в точке N , а угол отклонения был бы равен a. Но из-за трения шар немного не докатится до точки N и остановится в точке В .Это и будет новая точка поворота. В этой точке угол нити с осью OO 1 будет равен . За половину периода угол поворота маятника уменьшился на . Точка В расположена несколько ниже, чем точка А, и поэтому потенциальная энергия маятника в точке В меньше, чем в точке А. Следовательно, маятник потерял высоту при перемещении из точки А в точку В .

Найдем связь между потерей угла и потерей высоты . Для этого спроецируем точки A и B на ось OO 1 (см. рис. 1, а). Это будут точки A 1 и B 1 соответственно. Очевидно, что длина отрезка А 1 В 1

где - длина нити.

Так как ось OO 1 наклонена под углом к вертикали, проекция отрезка на вертикальную ось и есть потеря высоты (рис. 1, б):

При этом изменение потенциальной энергии маятника при переходе его из положения A в положение В равно:

, (3)

где m - масса шара;

g - ускорение свободного падения.

Вычислим работу силы трения.

Сила трения определяется по формуле:

Путь , пройденный шаром за половину периода колебаний маятника, равен длине дуги AB :

.

Работа силы трения на пути :

Но , поэтому с учетом уравнений (2), (3), (4) получается

. (6)

Выражение (6) существенно упрощается с учетом того, что угол очень мал (порядка 10 -2 радиан). Итак, . Но . Поэтому .

Таким образом, формула (6) приобретает вид:

,

. (7)

Из формулы (7) видно, что потеря угла за половину периода определяется коэффициентом трения m и углом a. Однако можно найти такие условия, при которых от угла a не зависит. Учтем, что коэффициент трения качения мал (порядка 10 -3). Если рассматривать достаточно большие амплитуды колебаний маятника a, такие, при которых , то слагаемым в знаменателе формулы (7) можно пренебречь и тогда:

.

С другой стороны, пусть угол a будет малым настолько, чтобы можно было считать, что . Тогда потеря угла за половину периода колебаний будет определяться формулой:

. (8)

Формула (8) справедлива, если:

. (9)

Из-за того, что m имеет порядок 10 -2 , неравенству (9) удовлетворяют углы a порядка 10 -2 -10 -1 радиан.

Итак, за время одного полного колебания потеря угла составит:

,

а за n колебаний - .

Формула (10) дает удобный способ определения коэффициента трения качения. Необходимо измерить уменьшение угла Da n за 10-15 ко-лебаний, а затем по формуле (10) вычислить m.

В формуле (10) величина Da выражена в радианах. Чтобы использовать значения Da в градусах, формулу (10) необходимо видоизменить:

. (11)

Выясним физический смысл коэффициента трения качения. Рассмотрим сначала более общую задачу. Шар массой m и моментом инерции I c относительно оси, проходящей через центр масс, движется по гладкой поверхности (рис. 2).

Рис. 2

К центру масс C приложена сила , направленная вдоль оси ox и являющаяся функцией координаты x . Со стороны поверхности на тело действует сила трения F ТР. Пусть момент силы трения относительно оси, проходящей через центр C шара, равен M ТР.

Уравнения движения шара в этом случае имеют вид:

; (12)

, (13)

где - скорость центpa масс;

w - угловая скорость.

В уравнениях (12) и (13) четыре неизвестных: , w, F ТР, M ТР. В общем случае задача не определена.

Допустим, что:

1) тело катится без проскальзывания. Тогда:

где R - радиус шара;

2) тело и плоскость являются абсолютно жесткими, т.е. тело не деформируется, а касается плоскости в одной точке О (точечный контакт), тогда между моментом силы трения и силой трения имеется связь:

. (15)

С учетом формул (14) и (15) из уравнений (12) и (13) получаем выражение для силы трения:

. (16)

Выражение (16) не содержит коэффициента трения m, который определяется физическими свойствами соприкасающихся поверхностей шара и плоскости, такими, как шероховатость, или вид материалов, из которых изготовлены шар и плоскость. Этот результат - прямое следствие принятой идеализации, отражаемой связями (14) и (15). Кроме того, легко показать, что в принятой модели сила трения не совершает работы. Действительно, умножим уравнение (12) на , а уравнение (13) — на w. Учитывая, что

и

и складывая выражения (12) и (13), получаем

где W (x ) - потенциальная энергия шара в поле силы F (x ). Следует учесть, что

Если принять во внимание формулы (14) и (15), то правая часть равенства (17) обращается в нуль. В левой части равенства (17) стоит производная по времени от полной энергии системы, которая состоит из кинетической энергии поступательного движения шара , кинетической энергии вращательного движения и потенциальной энергии W (х ). Это значит, что полная энергия системы - постоянная величина, т.е. сила трения не совершает работы.

Очевидно, что и этот несколько странный результат также следствие принятой идеализации. Это свидетельствует о том, что принятая идеализация не отвечает физической реальности. В самом деле, в процессе движении шар взаимодействует с плоскостью, поэтому его механическая энергия должна убывать, а это значит, что связи (14) и (15) могут быть верны лишь настолько, насколько можно пренебречь диссипацией энергии.

Совершенно ясно, что в данном случае нельзя принять такую идеализацию, поскольку наша цель - определить по изменению энергии маятника коэффициент трения. Поэтому будем считать справедливым предположение об абсолютной жесткости шара и поверхности, а значит, и справедливой связи (15). Однако откажемся от предположения, что шар движется без проскальзывания. Мы допустим, что имеет место слабое проскальзывание.

Пусть скорость точек касания (на рис. 2 точка О) шара (скорость проскальзывания):

. (19)

Тогда, подставляя в уравнение (17) и учитывая условия (15) и (20), приходим к уравнению:

, (21)

из которого видно, что скорость диссипации энергии равна мощности силы трения. Результат вполне естественный, т.к. тело скользит по поверхности со скоростью и, нанего действует сила трения, совершающая работу, вследствие чего полная энергия системы уменьшается.

Выполняя в уравнении (21) дифференцирование и учитывая соотношение (18), получаем уравнение движения центра масс шара:

. (22)

Оно аналогично уравнению движения материальной точки массой:

, (23)

под действием внешней силы F и силы трения качения:

.

Причем, F ТР - обычная сила трения скольжения. Следовательно, при качении шара эффективная сила трения, которую называют силой трения качения, есть просто обычная сила трения скольжения, умноженная на отношение скорости проскальзывания к скорости центра масс тела. На практике часто наблюдается случай, когда сила трения качения не зависит от скорости тела.

Видимо, в этом случае скорость проскальзывания и пропорциональна скорости тела:

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний системы с течением времени расходуется на работу против сил трения, поэтому собственные колебания всегда затухают – их амплитуда постепенно уменьшается. Потеря энергии происходит и при деформациях тел, так как вполне упругих тел не существует, а деформации не вполне упругих тел сопровождаются частичным переходом механической энергии в энергию хаотического теплового движения частиц этих тел.

Во многих случаях в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаний, пропорциональны величине скорости. Будем называть эти силы, независимо от их происхождения, силами трения или сопротивления и вычислять их по следующей формуле: . Здесь r – коэффициент сопротивления среды, – скорость движения тела. Знак минус указывает на то, что силы трения всегда направлены в сторону, противоположную направлению движения тела.

Запишем уравнение второго закона Ньютона для затухающих прямолинейных колебаний пружинного маятника

Здесь: m – масса груза, k – жесткость пружины, – проекция скорости на ось ОХ, – проекция ускорения на ось ОХ. Поделим обе части уравнения (13) на массу m и перепишем его в виде:

. (14)

Введем обозначения:

, (15)

. (16)

Назовем коэффициентом затухания, а мы ранее назвали собственной циклической частотой. С учетом введенных обозначений (15 и 16) уравнение (14) запишется

. (17)

Это дифференциальное уравнение затухающих колебаний любой природы. Вид решения этого линейного дифференциального уравнения второго порядка зависит от соотношения между величиной – собственной частотой незатухающих колебаний и коэффициентом затухания .

Если трение очень велико (в этом случае ), то система, выведенная из положения равновесия, возвращается в него, не совершая колебаний («ползет»). Такое движение (кривая 2 на рис.3) называют апериодическим.

Если же в начальный момент система с большим трением находится в положении равновесия и ей сообщается некоторая начальная скорость , то система достигает наибольшего отклонения от положения равновесия , останавливается и после этого смещение асимптотически стремится к нулю (рис.4).



Рис.3 Рис.4

Если система выведена из положения равновесия при условии и отпущена без начальной скорости, то система также не переходит положения равновесия. Но в этом случае время практического приближения к нему оказывается меньше, чем в случае большого трения (кривая 1 на рис 3). Такой режим называется критическим и к нему стремятся при использовании различных измерительных приборов (для быстрейшего отсчета показаний).



при малом трении (в этом случае ) движение носит колебательный характер (рис.5) и решение уравнения (17) имеет вид:

(19)

описывает изменение амплитуды затухающих колебаний со временем. Амплитуда затухающих колебаний уменьшается с течением времени (рис.5) и тем быстрее, чем больше коэффициент сопротивления и чем меньше масса колеблющегося тела, то есть чем меньше инертность системы.


Рис.5

Величину

называют циклической частотой затухающих колебаний. Затухающие колебания представляют собой непериодические колебания, так как в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Поэтому назвать частотой можно лишь условно в том смысле, что она показывает, сколько раз за секунд колеблющаяся система проходит через положение равновесия. По этой же причине величину

(21)

можно назвать условным периодом затухающих колебаний .

Для характеристики затухания введем следующие величины:

Логарифмический декремент затухания;

Время релаксации;

Добротность.

Отношение двух любых последовательных смещений, разделенных во времени одним периодом называют декрементом затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения значений амплитуды затухающих колебаний в моменты времени t и t+T (натуральный логарифм отношение двух любых последовательных смещений, разделенных во времени одним периодом):

Поскольку и , то .

Воспользуемся формулой зависимости амплитуды от времени (19) и получим

Выясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда затухающих колебаний убывает в е раз и назовем его временем релаксации . Тогда . отсюда следует, что