Сложные выражения с дробями. Порядок действий

Дробь - число, которое состоит из целого числа долей единицы и представляется в виде: a/b

Числитель дроби (a) - число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) - число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

2. Приведение дробей к общему знаменателю

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

3.2. Вычитание обыкновенных дробей

3.3. Умножение обыкновенных дробей

3.4. Деление обыкновенных дробей

4. Взаимно обратные числа

5. Десятичные дроби

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

6.2. Вычитание десятичных дробей

6.3. Умножение десятичных дробей

6.4. Деление десятичных дробей

#1. Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

3/7=3*3/7*3=9/21, то есть 3/7=9/21

a/b=a*m/b*m - так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Если ad=bc , то две дроби a/b =c /d считаются равными.

Например, дроби 3/5 и 9/15 будут равными, так как 3*15=5*9, то есть 45=45

Сокращение дроби - это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, 45/60=15/ ​20 =9/12=3/4 ​ (числитель и знаменатель делится на число 3, на 5 и на 15 ).

Несократимая дробь - это дробь вида 3/4 ​ , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби - сделать дробь несократимой.

2. Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, надо:

1) разложить знаменатель каждой дроби на простые множители;

2) умножить числитель и знаменатель первой дроби на недостающие

множители из разложения второго знаменателя;

3) умножить числитель и знаменатель второй дроби на недостающие множители из первого разложения.

Примеры: приведите дроби к общему знаменателю .

Разложим знаменатели на простые множители: 18=3∙3∙2, 15=3∙5

Умножили числитель и знаменатель дроби на недостающий множитель 5 из второго разложения.

числитель и знаменатель дроби на недостающие множители 3 и 2 из первого разложения.

= , 90 – общий знаменатель дробей .

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

a/b+c/b=(a+c)/b ​ ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

7/3+1/4=7*4/12+1*3/12=(28+3)/12=31/12

3.2. Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

a/b-c/b=(a-c)/b ​ ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

3.3. Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

a/b*c/d=a*c/b*d,

то есть перемножают отдельно числители и знаменатели.

Например:

3/5*4/8=3*4/5*8=12/40.

3.4. Деление обыкновенных дробей

Деление дробей производят следующим способом:

a/b:c/d=a*d/b*c,

то есть дробь a/b умножается на дробь, обратную данной, то есть умножается на d/c.

Пример: 7/2:1/8=7/2*8/1=56/2=28

4. Взаимно обратные числа

Если a*b=1, то число b является обратным числом для числа a .

Пример: для числа 9 обратным является 1/9 , так как 9*1/9= 1 , для числа 5 - обратное число 1/5 , так как 5* 1/5 = 1 .

5. Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10 000, …, 10^n 1 0 , 1 0 0 0 , 1 0 0 0 0 , . . . , 1 0 n .

Например: 6/10=0,6; 44/1000=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 51/10=5,1; 763/100=7,63

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

менателем, который является делителем некой степени числа 10 .

Пример: 5 - делитель числа 100 , поэтому дробь 1/5=1 *20/5*20=20/100=0,2 0 = 0 , 2 .

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

6.2. Вычитание десятичных дробей

Выполняется аналогично сложению.

6.3. Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 2 7 ⋅ 1 3 = 3 5 1 . Отделяем справа две цифры запятой (у первого и второго числа - одна цифра после запятой; 1+1=2 1 + 1 = 2 ). В итоге получаем 2,7 \cdot 1,3=3,51 2 , 7 ⋅ 1 , 3 = 3 , 5 1 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10 000 = 14 700 1 , 4 7 ⋅ 1 0 0 0 0 = 1 4 7 0 0 .

6.4. Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

Например, 2,8: 0,09= 28/10: 9/100= 28*100/10*9=2800/90=280/9 = 31 1/9 .

Выходим на битву с домашним заданием по математике! Враг — непокорные дроби. Программа 5 класса. Стратегически важная задача — объяснить ребенку дроби. Поменяемся ролями с учителем и попробуем сделать это «малой кровью», без нервов и в доступной форме. Обучить одного солдата куда легче, чем роту…

ria.ru

Как объяснить ребенку дроби

Не ждите, пока ребенок пойдет в 5 класс и встретится с дробями на страницах учебника по математике. Ответ на вопрос «Как объяснить ребенку дроби» рекомендуем поискать на кухне! И сделать это прямо сейчас! Даже если вашему малышу только 4-5 лет, смысл понятия «дроби» он в состоянии уяснить и даже может научиться простейшим действиям с дробями.

Мы делили апельсин.
Много нас, а он один
Эта долька для ежа, эта долька для чижа…
А для волка - кожура.

Помните стихотворение? Вот самый наглядный пример и самое эффективное руководство к действию! Объяснить ребенку дроби проще всего на примере еды: режем яблоко на половинки и четвертинки, делим пиццу между членами семьи, разрезаем буханку хлеба перед обедом и т.п. Главное, перед тем, как съесть «наглядное пособие» не забудьте озвучить, какую часть от целого вы «уничтожаете».

  • Введите понятие «доли».

Сделайте акцент на том, что ЦЕЛЫЙ апельсин (яблоко, шоколадка, арбуз и пр.) — это 1 (обозначаем цифрой 1).

  • Введите понятие «дробь».

Апельсин или шоколадку мы делим, можно еще сказать «дробим» на несколько частей.

Покажите ребенку хорошо знакомый предмет — линейку. Объясните, что между числами есть промежуточные значения - части.

i.ytimg.com

  • Объясните, как записывать дроби: что значит числитель, и на что указывает знаменатель.

Смысл понятия «дроби» и правильную запись легко показать на примере конструктора. В числителе НАД чертой пишем какая часть, а в знаменателе ПОД чертой — на сколько таких частей было разделено целое.

gladtolearn.ru

spacemath.xyz

Обязательно на наглядном примере покажите разницу между дробями с одинаковым числителем, но разными знаменателями.

gladtolearn.ru

На примере 4-х квадратов одинакового размера покажите, как можно разделить их на одинаковое/разное количество частей. Пусть ребенок сам разрежет ножницами бумажные заготовки, а затем запишет при помощи дробей результаты.


gladtolearn.ru

  • Объясните, как записать целое через дробь.

Вспомните квадрат и то, как мы делили его на 4 части. Квадрат — это целое, мы можем записать его как 1. Но как записать в виде дроби: что в числителе, что в знаменателе? Если мы делили квадрат на 4 части, то целый квадрат, это 4/4. Если мы делили квадрат на 8 частей, то целый квадрат это 8/8. Но это все равно квадрат, т.е. 1. И 4/4, и 8/8 — это единица, целое!

Как объяснить ребенку дроби: задаем ПРАВИЛЬНЫЕ вопросы

Чтобы ученик 5 класса понял тему «Дроби» и научился выполнять вычисления с дробями, заглянем в методику. Нам, родителям, важно понимать, как объясняет детям дроби учитель в школе, иначе мы можем окончательно запутать своего «солдата».

Дробь - это число, которое является частью целого предмета. Оно всегда меньше единицы.

Пример 1. Яблоко — это целое, а половинка — одна вторая. Она же меньше, чем целое яблоко? Половинки делим еще раз пополам. Каждая долька — одна четвертая от целого яблока, и она меньше, чем одна вторая.

Дробь - это количество частей от целого.

Пример 2. Например, в магазин одежды завезли новый товар: 30 рубашек. Продавцы успели разложить и развесить лишь одну треть всех рубашек из новой коллекции. Сколько рубашек они развесили?
Ребенок легко устно посчитает, что треть (одна третья) — это 10 рубашек, т.е. 10 развесили и вынесли в торговый зал, а еще 20 осталось на складе.

ВЫВОД: Дробями можно измерять все, что угодно, не только куски пиццы, но и литры в бочках, поголовье диких животных в лесу, площадь и т.п.

Приводите самые разные примеры из жизни, чтобы ребенок 5 класса понял СУТЬ дробей: это поможет в дальнейшем в решении задач и выполнении вычислений с правильными и неправильными дробями, и обучение в 5 классе будет не в тягость, а в радость.

Как убедиться, что ребенок усвоил, что в записи дробей обозначают числа в числителе и в знаменателе?

Пример 3. Спросите, что значит 5 в дроби 4/5?

— Это на сколько частей поделили.
— А что значит 4?
— Это сколько взяли.

Сравнение дробей — самая, пожалуй, сложная тема.

Пример 4. Предложите ребенку сказать, какая дробь больше: 3/10 или 3/20? Кажется, что раз 10 меньше 20, то и ответ очевиден, но это не так! Вспомните про квадраты, которые мы разрезали на части. Если два одинаковых по размеру квадрата разрезать — один на 10, второй на 20 частей — ответ очевиден? Так какая дробь больше?

Действия с дробями

Если вы видите, что ребенок хорошо усвоил смысл записи в виде дроби, можно переходить к простым арифметическим действиям с дробями. На примере конструктора можно сделать это очень наглядно.

Пример 5.

edinstvennaya.ua

Пример 6. Математическое лото на тему «Дроби».

www.kakprosto.ru

Уважаемые читатели, если вы знаете другие эффективные методики, как объяснить ребенку дроби, делитесь в комментариях. С радостью пополним нашу копилочку дельных школьных советов.

С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко.

Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n.

M - это делимое, то есть числитель дроби, а делитель n называют знаменателем.

Выделяют правильные дроби (m < n) а также неправильные (m > n).

Правильная дробь меньше единицы (к примеру 5/6 — это значит, что от единицы взято 5 частей; 2/8 — от единицы взято 2 части). Неправильная дробь равна или больше 1 (8/7 — единицей будет 7/7 и плюсом взята еще одна часть).

Так, единица, это когда числитель и знаменатель совпали (3/3, 12/12, 100/100 и другие).

Действия с обыкновенными дробями 6 класс

С простыми дробями можно производить следующие действия:

  • Расширять дробь. Если умножить верхнюю и нижнюю часть дроби на какое-либо одинаковое число (только не на ноль), то значение дроби не поменяется (3/5 = 6/10 (просто умножили на 2).
  • Сокращение дробей — схоже расширению, но тут делят на какое-либо число.
  • Сравнивать. Если у двух дробей числители одинаковыми, то большей окажется дробь с меньшим знаменателем. Если одинаковые знаменатели, то больше будет дробь с наибольшим числителем.
  • Выполнять сложение и вычитание. При одинаковых знаменателях это сделать просто (суммируем верхние части, а нижняя не меняется). При разных придется найти общий знаменатель и дополнительные множители.
  • Умножить и разделить дроби.

Примеры действий с дробями рассмотрим ниже.

Сокращенные дроби 6 класс

Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число.

На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2.

На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328 (заканчивается на четное) и т. д.

Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.

Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить.

Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264: 3 = 88. Это упростит сокращение больших чисел.

Помимо метода последовательного сокращения дроби на общие делители есть и другие способы.

НОД — это самый большой делитель для числа. Найдя НОД для знаменателя и числителя, можно сразу сократить дробь на нужное число. Поиск осуществляется путем постепенного деления каждого числа. Далее смотрят, какие делители совпадают, если их несколько (как на картинке ниже), то нужно перемножить.

Смешанные дроби 6 класс

Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева.

Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2.

Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется.

Вычисления с дробями 6 класс

Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте.

При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ).

В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя).

Обратите внимание, что при разности дробей алгоритм действий такой же.

При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу.

В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть.

В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ.

При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей).

При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть.

Основные задачи на дроби 6 класс

На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби.

Примеры умножения дроби 6 класс с пояснениями

Перемножающиеся дроби записываются под одной линией. После этого их сокращают путем деления на одни и те же числа (например, 15 в знаменателе и 5 в числителе можно разделить на пятерку).

Сравнение дробей 6 класс

Чтобы сравнить дроби, нужно запомнить два простых правила.

Правило 1. Если знаменатели разные

Правило 2. Когда знаменатели одинаковые

Например, сравним дроби 7/12 и 2/3.

  1. Смотрим на знаменатели, они не совпадают. Значит нужно найти общий.
  2. Для дробей общим знаменателем будет 12.
  3. Делим 12 сначала на нижнюю часть первой дроби: 12: 12 = 1 (это доп. множитель для 1-й дроби).
  4. Теперь 12 делим на 3, получаем 4 — доп. множитель 2-й дроби.
  5. Умножаем полученные цифры на числители, чтобы преобразовать дроби: 1 х 7 = 7 (первая дробь: 7/12); 4 х 2 = 8 (вторая дробь: 8/12).
  6. Теперь можем сравнивать: 7/12 и 8/12. Получилось: 7/12 < 8/12.

Чтобы представлять дроби лучше, можно для наглядности использовать рисунки, где предмет делится на части (к примеру, торт). Если требуется сравнить 4/7 и 2/3, то в первом случае торт делят на 7 частей и выбирают 4 из них. Во втором — делят на 3 части и берут 2. Невооруженным взглядом будет понятно, что 2/3 будет больше 4/7.

Примеры с дробями 6 класс для тренировки

В качестве тренировки можно выполнить следующие задания.

  • Сравнить дроби

  • выполнить умножение

Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72.

Решение уравнений с дробями 6 класс

В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается).

Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное.

Представим простые примеры решения уравнений:

Здесь требуется лишь произвести разность дробей, не приводя к общему знаменателю.

  • Деление на 1/2 заменили умножением на 2 (перевернули дробь).
  • Складывая 1/2 и 3/4, пришли к общему знаменателю 4. При этом для первой дроби понадобился дополнительный множитель 2, из 1/2 вышло 2/4.
  • Сложили 2/4 и 3/4 — получили 5/4.
  • Не забыли про умножение 5/4 на 2. Путем сокращения 2 и 4 получили 5/2.
  • Ответ получился в виде неправильной дроби. Ее можно преобразовать в 1 целую и 3/5.

    Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.

    Здесь мы разберемся, как проводится вычитание обыкновенных дробей . Сначала получим правило вычитания дробей с одинаковыми знаменателями. Дальше рассмотрим вычитание дробей с разными знаменателями и приведем примеры вычитания с подробными решениями. После этого остановимся на вычитании дроби из натурального числа и вычитании числа из дроби. В заключение покажем, как проводится вычитание обыкновенных дробей с использованием свойств этого действия.

    Сразу заметим, что в этой статье мы будем говорить лишь о вычитании меньшей дроби из большей дроби. Другие случаи разобраны в статье вычитание рациональных чисел .

    Навигация по странице.

    Вычитание дробей с одинаковыми знаменателями

    Для начала приведем пример, который позволит нам выяснить, как проводится вычитание дробей с одинаковыми знаменателями .

    Пусть на тарелке находилось пять восьмых долей яблока, то есть, 5/8 яблока, после чего две восьмых доли забрали. По смыслу вычитания (смотрите общее представление о вычитании), указанное действие описывается так: . Понятно, что при этом на тарелке остается 5−2=3 восьмых доли яблока. То есть, .

    Рассмотренный пример иллюстрирует правило вычитания дробей с одинаковыми знаменателями : при вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитается числитель вычитаемого, а знаменатель остается прежним.

    Озвученное правило с помощью букв записывается так: . Эту формулу и будем использовать при вычитании дробей с одинаковыми знаменателями.

    Рассмотрим примеры вычитания дробей с одинаковыми знаменателями .

    Пример.

    Выполните вычитание обыкновенной дроби 17/15 из обыкновенной дроби 24/15 .

    Решение.

    Знаменатели вычитаемых дробей равны. Числитель уменьшаемого равен 24 , а числитель вычитаемого равен 17 , их разность равна 7 (24−17=7 при необходимости смотрите вычитание натуральных чисел). Поэтому вычитание дробей с одинаковыми знаменателями 24/15 и 17/15 дает дробь 7/15 .

    Краткий вариант решения выглядит так: .

    Ответ:

    .

    При возможности нужно проводить сокращение дроби и (или) выделение целой части из неправильной дроби , которая получается при вычитании дробей с одинаковыми знаменателями.

    Пример.

    Вычислите разность .

    Решение.

    Воспользуемся формулой вычитания дробей с одинаковыми знаменателями: .

    Очевидно, числитель и знаменатель полученной дроби делятся на 2 (смотрите ), то есть, 22/12 – сократимая дробь . Выполнив сокращение этой дроби на 2 , приходим к дроби 11/6 .

    Дробь 11/6 – неправильная (смотрите правильные и неправильные дроби). Поэтому из нее нужно выделить целую часть: .

    Итак, вычисляемая разность дробей с одинаковыми знаменателями равна .

    Вот все решение: .

    Ответ:

    .

    Вычитание дробей с разными знаменателями

    Вычитание дробей с разными знаменателями сводится к вычитанию дробей с одинаковыми знаменателями. Для этого дроби с разными знаменателями достаточно привести к общему знаменателю.

    Итак, чтобы провести вычитание дробей с разными знаменателями , надо:

    • привести дроби к общему знаменателю (обычно дроби приводят к наименьшему общему знаменателю);
    • вычесть полученные дроби с одинаковыми знаменателями.

    Рассмотрим примеры вычитания дробей с разными знаменателями .

    Пример.

    Отнимите от обыкновенной дроби 2/9 обыкновенную дробь 1/15 .

    Решение.

    Так как знаменатели вычитаемых дробей разные, то сначала выполним приведение дробей к наименьшему общему знаменателю : так как НОК(9, 15)=45 , то дополнительным множителем дроби 2/9 является число 45:9=5 , а дополнительным множителем дроби 1/15 является число 45:15=3 , тогда и .

    Осталось вычесть из дроби 10/45 дробь 3/45 , получаем , что и дает нам искомую разность дробей с разными знаменателями.

    Кратко решение записывается так: .

    Ответ:

    Не следует забывать про сокращение полученной после вычитания дроби, а также про выделение целой части.

    Пример.

    Вычтите из дроби 19/9 дробь 7/36 .

    Решение.

    После приведения дробей с разными знаменателями к наименьшему общему знаменателю 36 , имеем дроби 76/9 и 7/36 . Вычисляем их разность: .

    Полученная дробь сократима, после ее сокращения на 3 , получаем 23/12 . А эта дробь неправильная, выделив из нее целую часть, имеем .

    Соберем воедино все выполненные действия при вычитании исходных дробей с разными знаменателями: .

    Ответ:

    .

    Вычитание натурального числа из обыкновенной дроби

    Вычитание натурального числа из дроби можно свести к вычитанию обыкновенных дробей. Для этого достаточно представить натуральное число в виде дроби со знаменателем 1 . Разберем решение примера.

    Пример.

    Выполните вычитание числа 3 из дроби 83/21 .

    Решение.

    Так как число 3 равно дроби 3/1 , то .

    Ответ:

    Однако вычитание натурального числа из неправильной дроби удобнее проводить, представив дробь в виде смешанного числа . Покажем решение предыдущего примера этим способом.

    Вычитание обыкновенной дроби из натурального числа

    Вычитание обыкновенной дроби из натурального числа можно свести к вычитанию обыкновенных дробей, представив натуральное число как дробь. Разберем решение примера, иллюстрирующего такой подход.

    Пример.

    Отнимите обыкновенную дробь 5/3 от натурального числа 7 .

    Решение.

    Представим число 7 как дробь 7/1 , после чего выполним вычитание: .

    Выделив целую часть из полученной дроби, получаем окончательный ответ .

    Ответ:

    Однако существует более рациональный способ вычитания дроби из натурального числа. Его преимущества особенно заметны, когда уменьшаемое натуральное число и знаменатель вычитаемой дроби являются большими числами. Все это будет видно из примеров ниже.

    Если вычитаемая дробь правильная, то уменьшаемое натуральное число можно заменить суммой двух чисел, одно из которых равно единице, отнять правильную дробь от единицы, после чего завершить вычисления.

    Пример.

    Выполните вычитание обыкновенной дроби 13/62 из натурального числа 1 065 .

    Решение.

    Вычитаемая обыкновенная дробь – правильная. Заменим число 1 065 суммой 1 064+1 , при этом получим . Осталось вычислить значение полученного выражения (подробнее о вычислении таких выражений мы поговорим в ).

    В силу свойств вычитания, полученное выражение можно переписать как . Вычислим значение разности в скобках, заменив единицу дробью 1/1 , имеем . Таким образом, . На этом вычитание дроби 13/62 из натурального числа 1 065 завершено.

    Вот все решение:

    А теперь для сравнения покажем, с какими числами нам бы пришлось работать, если бы мы решили свести вычитание исходных чисел к вычитанию дробей:

    Ответ:

    .

    Если же вычитаемая дробь неправильная, то ее можно заменить смешанным числом, после чего провести вычитание смешанного числа из натурального числа .

    Чтоб сложить 2 дроби с одинаковыми знаменателями , необходимо сложить их числители, а знаменатели оставить без изменений. Сложение дробей , примеры :

    Общая формула для сложения обыкновенных дробей и вычитания дробей с одинаковыми знаменателями:

    Обратите внимание! Проверьте нельзя ли сократить дробь , которую вы получили, записывая ответ.

    Сложение дробей с разными знаменателями.

    Правила сложения дробей с разными знаменателями:

    • приводим дроби к наименьшему общему знаменателю (НОЗ) . Для этого находим наименьшее общее кратное (НОК) знаменателей;
    • складываем числители дробей, а знаменатели оставляем не меняя;
    • сокращаем дробь, которую получили;
    • если получили неправильная дробь - преобразовываем неправильную дробь в смешанную дробь .

    Примеры сложения дробей с разными знаменателями:

    Сложение смешанных чисел (смешанных дробей).

    Правила сложения смешанных дробей:

    • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
    • отдельно складываем целые части и отдельно дробные части, складываем результаты;
    • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
    • сокращаем полученную дробь.

    Пример сложения смешанной дроби :

    Сложение десятичных дробей.

    При сложении десятичных дробей процесс записывают «столбиком» (как обычное умножение столбиком), так чтобы одноимённые разряды находились друг под другом без смещения. Запятые обязательно выравниваем чётко друг под другом.

    Правила сложения десятичных дробей:

    1. Если нужно, уравниваем количество знаков после запятой. Для этого добавляем нули к необходимой дроби.

    2. Записываем дроби так, чтобы запятые находились друг под другом.

    3. Складываем дроби, не обращая внимания на запятую.

    4. Ставим запятую в сумме под запятыми, дробей, которые складываем.

    Обратите внимание! Когда у заданных десятичных дробей разное количество знаков (цифр) после запятой, то к дроби, у которой меньше десятичных знаков приписываем нужное количество нулей, для уравнения в дробях число знаков после запятой.

    Разберёмся на примере . Найти сумму десятичных дробей:

    0,678 + 13,7 =

    Уравниваем число знаков после запятой в десятичных дробях. Дописываем 2 нуля справа к десятичной дроби 13,7 .

    0,678 + 13,700 =

    Записываем ответ:

    0,678 + 13,7 = 14,378

    Если сложение десятичных дробей вы освоили достаточно хорошо, то недостающие нули можно дописывать в уме.